长江流域资源与环境 >> 2025, Vol. 34 >> Issue (10): 2327-.doi: 10.11870/cjlyzyyhj202510015

• 生态环境 • 上一篇    下一篇

天鹅洲故道沉积物有机碳埋藏特征及来源解析

刘力1,张雅1,李歆2,邹妍慜2,罗华1,匡华1,刘威杰2, 3,易红新4,毛峻峰5,陶乐5,邢新丽2, 3*   

  1. (1.湖北省地质调查院,湖北 武汉 430034;2.中国地质大学(武汉)环境学院,湖北 武汉 430074;3. 中国地质大学(武汉)生物地质与环境地质国家重点实验室,湖北 武汉 430074;4.石首麋鹿国家级自然保护区管理处,湖北 石首 434400;5.湖北长江天鹅洲白鱀豚国家级自然保护区管理处,湖北 石首 434400)
  • 出版日期:2025-10-20 发布日期:2025-10-23

Burial Characteristics and Sources of Organic Carbon in Lake Sediments of Tian-e-zhou Oxbow Lake of Yangtze River

LIU Li1, ZHANG Ya1, LI Xin2, ZOU Yan-min2, LUO Hua1, KUANG Hua1, LIU Wei-jie2, 3, YI Hong-xin4, MAO Jun-feng5, TAO Le5, XING Xin-li2, 3    

  1. (1. HuBei Geological Survey, Wuhan 430034, China; 2.School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; 3.State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; 4. HuBei Shishou Milu National Nature Reseve, Shishou 434400, China; 5.Baiji National Natural Reserve of the Tian-e-zhou Oxbow in Yangtze River, Shishou 434400, China;)
  • Online:2025-10-20 Published:2025-10-23

摘要: 以长江中游天鹅洲故道为研究对象,探讨沉积物有机碳埋藏特征及来源。通过210 Pbex定年技术构建沉积年代模型,结合粒度分析、稳定同位素(δ13C、δ15N)和碳氮比(C/N),系统研究了沉积速率(SAR)、有机碳累积速率(OCAR)及有机碳来源的时空变化。结果显示,天鹅洲沉积柱的SAR范围为0.60~0.78 cm·a-1,OCAR平均为92.2 g·m-2·a-1,20世纪50年代至90年代因洪水事件和人类活动的干扰出现显著波动,而90年代后趋于稳定。δ13C和C/N分析表明,沉积有机碳主要来源于外源输入(占比58.76%),其中以C3植物为主,内源贡献较小。OCAR与外源总有机碳(TOC)和总氮(TN)呈显著正相关,表明外源输入是有机碳埋藏的关键驱动因素。研究揭示了天鹅洲故道沉积环境对有机碳埋藏的调控作用,为区域湿地的碳循环评估和管理提供了科学依据。

关键词:

Abstract:

This study explored the burial characteristics and sources of organic carbon in sediments of Tian-e-zhou oxbow lake in the middle reaches of Yangtze river. The sediment accumulation rate (SAR), organic carbon accumulation rate (OCAR) and the temporal and spatial variations of organic carbon sources were analyzed, based on the characteristics of the 210 Pbex dating technique. Particle size analysis, stable isotopes of carbon (δ13C and δ15N) and carbon to nitrogen ratio (C/N) were also adopted in the dating method. The results showed that, the SAR range of the column was 0.60~0.78 cm·a-1, and the average OCAR was 92.2 g·m-2·a-1. This value fluctuated significantly from 1950s to 1990s due to the disturbance of flood events and human activities. It became relatively stable after 1990s. The δ13C and C/N analysis showed that the organic carbon was mainly derived from exogenous inputs (58.76%), in which C3 plants were the main sources, and the endogenous contribution was small. OCAR was significantly positively correlated with exogenous total organic carbon (TOC) and total nitrogen (TN), which indicated that exogenous input was a key driving factor of organic carbon burial. The study revealed the regulatory effect of the sedimentary environment on organic carbon burial, and provided a scientific basis for carbon cycle assessment and management of regional wetlands.

[1] 王凯, 刘美伦, 甘畅. 城乡融合对碳排放绩效的影响[J]. 长江流域资源与环境, 2025, 34(6): 1278-.
[2] 朱思吉, 吴映梅, 孙俊, 柯月嫦, 陆清平, 刘佳灵. 2000—2020年西南山区乡村生计韧性时空演变特征及影响因素[J]. 长江流域资源与环境, 2025, 34(6): 1371-.
[3] 王宇环, 靳 诚, 安鸿波, 刘 月. 基于低碳出行方式的南京市本地居民景点可达性研究[J]. 长江流域资源与环境, 2018, 27(11): 2443-2452.
[4] 赵 毅, 徐绪堪, 李晓娟. 基于变权灰色云模型的江苏省水环境系统脆弱性评价[J]. 长江流域资源与环境, 2018, 27(11): 2463-2471.
[5] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481-2495.
[6] 高洁芝, 郑华伟, 刘友兆. 基于熵权TOPSIS模型的土地利用多功能性诊断[J]. 长江流域资源与环境, 2018, 27(11): 2496-2504.
[7] 孔锋, 杨萍, 王品, 吕丽莉, 孙劭. 中国灾害性对流天气日数的时空变化特征[J]. 长江流域资源与环境, 2018, 27(11): 2518-2528.
[8] 任娟, 王建力, 杨平恒, 詹兆君, . 亚高山旅游景区岩溶地下水水化学动态变化及其影响因素[J]. 长江流域资源与环境, 2018, 27(11): 2548-2557.
[9] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558-2567.
[10] 周惠, 赵微, 汪飞腾. 农地整理后期管护制度绩效研究:影响路径及中介效应分析[J]. 长江流域资源与环境, 2018, 27(11): 2629-2639.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!