长江流域资源与环境 >> 2006, Vol. 15 >> Issue (5): 569-573.

• 湿地与生态 • 上一篇    下一篇

长江中下游湖泊沉积速率的测定及环境意义——以洪湖、巢湖、太湖为例

姚书春,薛 滨,李世杰, 刘吉峰, 夏威岚   

  • 收稿日期:2005-09-30 修回日期:2005-10-30 出版日期:2006-09-20
  • 通讯作者: 姚书春

SEDIMENTATION RATES IN HONGHU, CHAOHU AND TAIHU LAKES IN THE MIDDLE AND LOWER REACHES OF THE YANGTZE RIVER

YAO Shu-chun, XUE Bin, LI Shi-jie, LIU Ji-feng, XIA Wei-lan   

  • Received:2005-09-30 Revised:2005-10-30 Online:2006-09-20
  • Contact: YAO Shu-chun

摘要: 对长江中下游洪湖、巢湖和太湖沉积物采用210Pb和137Cs相结合的方法测定沉积速率。洪湖钻孔中210Pbex随深度的增加没有呈现指数衰减分布,因此获得的平均沉积速率并不可靠;而根据137Cs蓄积峰计算得出洪湖钻孔在1963~1986年沉积速率最大,这可能是因为当时大规模开垦导致湖区周围水土流失,大量的侵蚀物质被带入湖中,从而导致沉积速率上升。对巢湖钻孔用210Pb法和137Cs得到的沉积速率具有可比性,研究发现20世纪70年代以来随着深度的减少,巢湖钻孔中沉积通量在增加,说明巢湖流域内水土流失逐步加重,可能与土地开发、植被破坏等人为活动有关。对太湖钻孔利用137Cs 1963年对应的蓄积峰进行校正,采用210Pb计年的CRS模式获得不同时段的沉积速率发现在80年代末尾沉积物堆积通量最高,达到0.6 g·cm-2·a-1。两种计年方法的结合有助于认识沉积速率的变化情况。

关键词: 210Pb, 137Cs, 沉积速率, 洪湖, 巢湖, 太湖

Abstract: Three lakes, i.e. Honghu, Chaohu and Taihu Lakes in the middle and lower reaches of Yangtze River were selected for understanding the change of sedimentation rates. Environmental 210Pb (natural) and 137Cs (anthropogenic) dating techniques were used. The relationship between exponential 210Pb and depth is nonlinear in Honghu Lake core. Based on 137Cs dating markers, the sediment rate from 1963 to 1986 was the greatest, and it decreased from 1986 to 2002, which was attributed to human activities such as the reclaiming. The chronologies calculated by 210Pb CIC method were consistent with 137Cs dating markers in Chaohu Lake core. It is concluded that since 1970's the flux of deposit increased with the decrease of depth for Chaohu Lake due to the increase of soil erosion. In Taihu Lake core, the average sedimentation rate was 0.34 cm/a calculated by 137Cs markers, while the value 0.41 cm/a was obtained based on 210Pb CIC method. The 210Pb chronologies were corrected using the 1963 137Cs marker in Tauihu Lake core. The results show that sedimentation flux rates are very high, reaching to 0.6 g·cm-2·a-1 near 1990's in Taihu Lake. The combination of these radionuclide dating methods is useful to understand the sedimentation process of the lakes where sedimentation rates have changed.

Key words: 210Pb, 137Cs, sedimentation rates, Honghu Lake, Chaohu Lake, Taihu Lake

[1] 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914.
[2] 许玲燕, 杜建国, 刘高峰. 基于云模型的太湖流域农村水环境承载力动态变化特征分析——以太湖流域镇江区域为例[J]. 长江流域资源与环境, 2017, 26(03): 445-453.
[3] 陈江龙, 田柳, 赵酉辰. 基于ILBM的太湖饮用水源地管理研究——以苏州市为例[J]. 长江流域资源与环境, 2016, 25(12): 1815-1823.
[4] 陈星, 张平究, 包先明, 张璐璐, 张海霞, 韩燕青. 改良剂对湿地土壤团聚体及抗悬浮能力的影响试验[J]. 长江流域资源与环境, 2016, 25(12): 1903-1909.
[5] 孙鸿鹄, 程先富, 陈翼翔, 张媛. 区域洪涝灾害恢复力时空演变研究——以巢湖流域为例[J]. 长江流域资源与环境, 2016, 25(09): 1384-1394.
[6] 黄锐, 赵佳玉, 肖薇, 刘寿东, 李汉超, 徐敬争, 胡诚, 肖启涛. 太湖辐射和能量收支的时间变化特征[J]. 长江流域资源与环境, 2016, 25(05): 733-742.
[7] 黄木易, 何翔. 巢湖流域土地景观格局变化及生态风险驱动力研究[J]. 长江流域资源与环境, 2016, 25(05): 743-750.
[8] 李国莲, 谢发之, 张瑾, 陈广洲, 汪静柔. 巢湖水及沉积物中总磷的分布变化特征[J]. 长江流域资源与环境, 2016, 25(05): 830-836.
[9] 吕文, 杨桂山, 万荣荣. 太湖流域近25年土地利用变化对生态耗水时空格局的影响[J]. 长江流域资源与环境, 2016, 25(03): 445-452.
[10] 钱红, 严云志, 储玲, 朱仁, 高俊峰, 蔡永久. 巢湖流域河流鱼类群落的时空分布[J]. 长江流域资源与环境, 2016, 25(02): 257-264.
[11] 焦雯珺, 闵庆文, 李文华, Anthony M. Fuller. 基于ESEF的水生态承载力评估——以太湖流域湖州市为例[J]. 长江流域资源与环境, 2016, 25(01): 147-155.
[12] 龚志军, 李艳, 张敏, 蔡永久, 薛庆举, 许浩. 大型浅水湖泊太湖霍甫水丝蚓次级生产力的研究[J]. 长江流域资源与环境, 2015, 24(12): 2054-2060.
[13] 匡武, 芮明, 张彦辉, 严云志, 吴添天. 巢湖湖滨带生态恢复工程对暴雨径流氮磷削减效果研究[J]. 长江流域资源与环境, 2015, 24(11): 1906-1912.
[14] 姚飞, 陈龙乾, 张宇, 吴沛瑶, 张红梅, 王秉义. 巢湖水陆交错带生态服务价值梯度分析[J]. 长江流域资源与环境, 2015, 24(09): 1568-1576.
[15] 孙鸿鹄, 程先富, 戴梦琴, 王祥, 康海迪. 基于DEMATEL的区域洪涝灾害恢复力影响因素及评价指标体系研究——以巢湖流域为例[J]. 长江流域资源与环境, 2015, 24(09): 1577-1583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚海林,杨 洋, 谷志孟. 垃圾块体填埋法及其应用前景[J]. 长江流域资源与环境, 2005, 14(1): 123 -126 .
[2] 王雷宏,黄庆丰,蒲发光,周美生,陆发存. 天马自然保护区大别山五针松与群落中优势种的种间关系[J]. 长江流域资源与环境, 2014, 23(07): 918 .