长江流域资源与环境 >> 2008, Vol. 17 >> Issue (2): 306-306.

• 生态环境 • 上一篇    下一篇

基于降雨和地形特征的输出系数模型改进及精度分析

丁晓雯| 沈珍瑶| 刘瑞民| 齐 珺   

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-03-20

IMPROVED EXPORT COEFFICIENT MODEL CONSIDERING PRECIPITATION AS WELL AS TERRAIN AND ITS ACCURACY ANALYSIS

DING Xiaowen| SHEN Zhenyao| LIU Ruimin| QI Jun   

  • Received:1900-01-01 Revised:1900-01-01 Online:2008-03-20

摘要:

降雨是非点源污染产生的主要驱动条件,地形是非点源污染输移的重要影响因素,两者均与非点源污染紧密相关。输出系数模型是大尺度流域非点源污染模拟的常用模型,从降雨和地形对非点源污染产生、迁移的影响出发,对现有输出系数模型进行了改进,并给出了改进模型中降雨影响因子和地形影响因子的确定方法,以提高模型在大尺度流域的模拟精度。最后,以长江上游1990和2000年TN负荷估算为例,分析了模型改进前后的精度变化。精度对比表明,通过模型改进,流域综合相对误差从4502%和4249%减小到2393%和1838%,直门达站、沱江大桥站和罗渡溪站控制流域的相对误差有明显减小。改进后的输出系数模型结构更合理,模拟更符合实际。

关键词: 输出系数模型, 降雨, 地形, TN负荷, 精度分析

Abstract:

The dominant method in the field of nonpoint source(NPS)pollution research is NPS simulation model,in which export coefficient model is widely used.But for basins with obvious spatial differences of precipitation and terrain,such as upper reach of the Yangtze River,the model accuracy is limited for the sake of its neglecting of precipitation and terrain impact on NPS pollution.Considering that,an improved export coefficient model is proposed in this article,and the method for determining precipitation and terrain factors was also offered.The model was applied to simulate the total nitrogen load of upper reach of the Yangtze River in 1990 and 2003.It is indicated that average values of relative error for various watersheds reduced from 4502% to 2393% and from 4249% to 1838% respectively by using the improved model.Relative error values for watersheds control by Zhimenda,Luoduxi and Tuojiangdaqiao stations decreased obviously.The relative error values of Zhimenda Station reduced from 20729% to 2484% (1990 year) and from 16325% to 1816% (2003 year) respectively,those of Luoduxi Station decreased from -3372% to -1924% (1990 year)and from -4120% to -2435% (2003 year)respectively,and the relative error value of Tuojiangdaqiao Station reduced from 3247% to -215% (2003 year).It can be concluded that the improved model is feasible and the predicted result is approximately in accordance with the monitoring data.For large scale basin,especially those with obvious spatial differences of precipitation and terrain,the improved model has its theoretical and practical significance.

Key words: export coefficient model, precipitation, terrain, total nitrogen load, accuracy analysis

[1] 刘冀, 孙周亮, 张特, 程雄, 董晓华, 谈新. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11): 2558-2567.
[2] 叶明华, 汪荣明, 丁越, 束炯. 基于Copula相依函数的安徽省气温与降雨量相关性研究[J]. 长江流域资源与环境, 2017, 26(01): 110-117.
[3] 郭忠录, 马美景, 蔡崇法, 闫峰陵. 模拟降雨径流作用下红壤坡面侵蚀水动力学机制[J]. 长江流域资源与环境, 2017, 26(01): 150-157.
[4] 李丹, 郭生练, 洪兴骏, 郭靖. 汉江流域1960~2014年降雨极值时空变化特征[J]. 长江流域资源与环境, 2016, 25(09): 1448-1456.
[5] 张雪婷, 陈正洪, 孙朋杰, 许杨. 湖北侧长江三峡河谷地形对风速的影响[J]. 长江流域资源与环境, 2016, 25(05): 851-858.
[6] 李奋生, 赵国华, 李勇, 梁明剑, 闫亮, 颜照坤, 李敬波, 郑立龙. 青藏高原东缘的隆升及其水系的响应[J]. 长江流域资源与环境, 2016, 25(03): 420-428.
[7] 杨伟, 张琪, 李朝霞, 张利超, 蔡崇法. 几种典型红壤模拟降雨条件下的泥沙特征研究[J]. 长江流域资源与环境, 2016, 25(03): 439-444.
[8] 吴见, 王帅帅, 谭靖. 基于安徽省土地利用变化的地形梯度效应分析[J]. 长江流域资源与环境, 2016, 25(02): 239-248.
[9] 赵平伟, 郭萍, 李成武, 李立印, 张俊凯, 李屏, 邓辉敏. 云南不同量级降雨下的降雨侵蚀力特征分析[J]. 长江流域资源与环境, 2015, 24(12): 2135-2141.
[10] 黄小燕, 韦杰. 长江上游流域降雨侵蚀力变化对河流输沙量的影响[J]. 长江流域资源与环境, 2015, 24(09): 1606-1612.
[11] 周明涛, 胡旭东, 张守德, 高家祯. 降雨径流面源污染年负荷预测方法的开发——以镇江古运河为例[J]. 长江流域资源与环境, 2015, 24(08): 1381-1386.
[12] 陈心池, 张利平, 闪丽洁, 杨卫, 徐霞. 基于Copula函数的汉江中上游流域极端降雨洪水联合分布特征[J]. 长江流域资源与环境, 2015, 24(08): 1425-1433.
[13] 高东东, 吴勇, 陈盟, 王春红. 贡嘎山森林系统小流域基流分割与降雨入渗补给计算[J]. 长江流域资源与环境, 2015, 24(06): 949-955.
[14] 吴 楠| 高吉喜, 苏德毕力格| 罗遵兰| 李岱青. 长江上游不同地形条件下的土地利用/覆盖变化[J]. 长江流域资源与环境, 2010, 19(03): 268-.
[15] 牛叔文, 孙红杰, 秦 静, 李怡涵. 基于农业用地和地形约束的陇南山区适宜人口规模估算[J]. 长江流域资源与环境, 2010, 19(01): 73-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!