长江流域资源与环境 >> 2015, Vol. 24 >> Issue (06): 978-986.doi: 10.11870/cjlyzyyhj201506012

• 自然资源 • 上一篇    下一篇

浙江青山水库浮游植物群落结构变化及与环境因子的关系

盛海燕1,2, 姚佳玫2, 何剑波2, 刘明亮2, 韩轶才2, 虞左明2   

  1. 1. 南京林业大学生物与环境学院, 江苏 南京 210037;
    2. 杭州市环境保护科学研究院, 浙江 杭州 310014
  • 收稿日期:2014-05-09 修回日期:2014-07-01 出版日期:2015-06-20
  • 作者简介:盛海燕(1978~ ),女,高级工程师,主要从事淡水生态与环境研究工作.E-mail:21708089@qq.com
  • 基金资助:
    杭州市科技发展计划项目(20091133B11);杭州市环境保护科研计划重大项目(2010116)

PHYTOPLANKTON COMMUNITY VARIATION AND RELATIONSHIP WITH ENVIROMENTAL FACTORS IN QINGSHANHU RESERVOIR, ZHEJIANG PROVINCE

SHENG Hai-yan1,2, YAO Jia-mei2, HE Jian-bo2, LIU Ming-liang2, HAN Yi-cai2, YU Zuo-ming2   

  1. 1. College of Biology and Environment, Nanjing Forestry University, Nanjing 210037, China;
    2. College of Biology and Environment, Hangzhou Institute of Environmental Protection Science, Hangzhou 310014, China
  • Received:2014-05-09 Revised:2014-07-01 Online:2015-06-20

摘要: 于2009年按季度对浙江省临安市内的青山水库进行调查,测定了水体环境因子、浮游植物群落,采用营养状态指数法对水库水质现状进行了分析和评价,并探讨了浮游植物与环境因子之间的关系。结果表明:青山水库处于轻度富营养化和中度富营养化之间,水库入库处营养状态综合指数高于库中和大坝处。调查期间共发现浮游植物7门40属89种。不同季节浮游植物主要优势种类不同,春季以硅藻、隐藻和甲藻为主,夏季以蓝藻和绿藻为主,秋季以蓝藻、硅藻和隐藻为主,冬季以硅藻和隐藻为主。相关分析表明,青山水库浮游植物密度与出入库流量和透明度呈显著负相关,与总磷呈显著正相关。典范对应分析(CCA)表明,出入库流量、水温、溶解氧和营养盐是影响水体浮游植物分布格局的重要环境因子。

关键词: 浮游植物, 富营养化, 典范对应分析, 环境因子

Abstract: Qingshan Reservoir is an important utilization large reservoir which was built in 1964. Its eco-environment and water management have a great significance on sustainable development of this area. With the fast economical development, the water quality has been declined as an amount of pollutants discharged. To explore the characteristics of the phytoplankton community structure and the response of water quality, a survey was carried out quarterly in Qingshan Reservoir in 2009. Based on the analysis of phytoplankton and water samples from inflow, center and dam in Qingshan Reservoir, the characteristics of community structure and abundance distribution were studied, and the water situation was evaluated. Cell number and species identification were performed by light microscope. The dominant population, species diversity and community structure of phytoplankton were determined as well. A total of 89 species in 40 genera and 7 divisions were identified, which the most abundant group was Chlorophyta, with 33 species that account for 37% of total species, followed by Bacillariophyta (27 species), Cyanophyta (17 species), Euglenophyta (6 species), other alges (6 species). The abundance of phytoplankton cells varied from 6.20×105 to 1.18×107 cells/L (averaging 4.88×107 cells/L). The main physical and chemical indicators results showed that the water quality of Qingshan Reservoir was in the light-middle eutrophic state. The trophic state index was higher in inflow than in center and dam sites. The concentrations of total nitrogen and total phosphorus were higher than the surface water quality standards Ⅳ value. The indices of Shannon-Wiener, Margalef and Pielou Evenness were 1.37-2.23 (averaging 1.79), 0.56-1.52 (averaging 1.05) and 0.45-0.77 (averaging 0.64), respectively. The dominant species of each month were identified and their contribution to the total abundance was analyzed. The seasonal variation of phytoplankton community structure was significant. In spring Bacillariophyta, Cryptophyta and Pyrrophyta dominated, in summer Cyanophyta and Chlorophyta dominated, in autumn Cyanophyta, Bacillariophyta and Cryptophyta, and in winter Bacillariophyta and Cryptophyta. The relationship between phytoplankton and environmental factors were discussed. Correlation analysis showed that there was significant negative correlation between phytoplankton density and transparency, inflow, outflow, and significant positive correlation between phytoplankton density and TP. Canonical correspondence analysis (CCA) showed that the inflow, outflow, water temperature, dissolved oxygen and nutrients were important environmental factors affecting the distribution pattern of phytoplankton. Qingshan Reservoir is located in a typical subtropical monsoon climate area, seasonal changes in the density of phytoplankton communities significantly affected by seasonal changes in watershed hydrology, and in particular, rainfall, temperature and hydraulic retention time are the main factors affecting phytoplankton community.

Key words: phytoplankton, eutrophication, canonical correspondence analysis(CCA), enviromental factors

中图分类号: 

  • Q948.1
[1] 张 婷,李 林,宋立荣.熊河水库浮游植物群落结构的周年变化[J].生态学报,2009,29(6):2971-2979.
[2] 申恒伦,徐耀阳,王 岚.丹江口水库浮游植物时空动态及影响因素[J].植物科学学报,2011,29(6):683-690.
[3] COMIN FA,MENENDEZ M,LUCENA J K.Proposal for macrophyte restoration in eutrophic coastal lagoons[J].Hydrobiologia,1990,200/201:427-436.
[4] 陈立婧,吴竹臣,胡忠军,等.上海崇明岛明珠湖浮游植物群落结构[J].应用生态学报,2011,22(6):1599-1605.
[5] PADISÓK J,REYNOLDS C S.Selection of phytoplankton associations in Lake Balaton,Hungary,in response to eutrophication and restoration measures,with special reference to the cyanoprokaryotes[J].Hydrobiologia,1998,384:41-53.
[6] NASELLI-FLORES L.Phytoplankton assemblages in twenty-one Sicilian reservoirs:relationships between species composition and environmental factors[J].Hydrobiologia,2000,424:1-11.
[7] 赵孟绪,雷腊梅,韩博平.亚热带水库浮游植物群落季节变化及其影响因素分析——以汤溪水库为例[J].热带亚热带植物学报,2005,13(5):386-392.
[8] PADISÓK J,CROSSETTI L O,NASELLI-FLORES L.Use and misuse in the application of the phytoplankton functional classification:a critical review with updates[J].Hydrobiologia,2009,621(1):1-19.
[9] 张 芬,杨长明,潘睿捷.青山水库表层沉积物重金属污染特征及生态风险评价[J].应用生态学报,2013,24(9):2625-2630.
[10] 李 瑾,吴 洁,巩 兵,等.浙江青山水库浮游植物群落结构的研究初报[J].浙江农业学报,1998,10(3):122-127.
[11] 落全富,刘国华.青山水库提高蓄水位研究[J].浙江水利水电专科学校学报,2010,22(1):4-6.
[12] 蔡红娟,叶 萍.青山水库2011年梅雨期洪水调度分析[J].浙江水利水电专科学校学报,2012,24(4):25-29.
[13] 楼 燕,李峻雷,王国龙.青山水库水环境质量调查与保护对策[J].环境监测管理与技术,2000,12:26-28.
[14] 王紫雯,陈昌军,蔡胜利.青山水库底泥磷释放与库区水体磷浓度的关系[J].环境污染与防治,2001,23(4):162-164.
[15] 虞左明.青山水库底栖动物群落初步研究[J].环境污染与防治,2001,23(5):229-231.
[16] 吴 洁,王国龙.西湖与青山水库底栖动物群落的研究[J].环境监测管理与技术,2000,12:17-19.
[17] 李 瑾,虞左明,朱 文,等.青山水库的浮游植物与营养类型评价[J].环境污染与防治,1997,19(4):21-23.
[18] 李 瑾,吴 洁,巩 兵,等.浙江青山水库浮游植物群落结构的研究初报[J].浙江农业学报,1998,10(3):122-127.
[19] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
[20] 黄祥飞.湖泊生态调查观测与分析[M].北京:中国标准出版社,2000.
[21] 胡鸿钧,魏印心.中国淡水藻类——系统、分类及生态[M].北京:科学出版社,2006:23-948.
[22] 中国环境监测总站.湖泊水库富营养化评价方法及分级技术规定[M].北京:中国环境监测总站,2001.
[23] HABIB O A,TIPPET T R.Seasonal changes in phytoplankton community structure in relation to physic-chemical factors in Loch Lomond[J].Hydrobiologia,1997,350:63-79.
[24] 谭 香,夏小玲,程晓莉,等.丹江口水库浮游植物群落时空动态及其多样性指数[J].环境科学,2011,32(10):2875-2882.
[25] ABRANTES N,ANTUNES S C,PEREIRA M J,et al.Seasonal succession of cladocerans and phytoplankton and their interactions in a shallow eutrophic lake(Lake Vela,Portuga1)[J].Acta Oecologica,2006,29:54-64.
[26] 况琪军,马沛明,胡征宇,等.湖泊富营养化的藻类生物学评价与治理研究进展[J].安全与环境学报,2005,4(2):87-91.
[27] SOMMER U,MACIEJ GZ,LAMPERT M,et al.The PEG model of seasonal succession of planktonic events in freshwaters[J].Hydrobiologia,1986,106:433-471.
[28] SOMMER U,ADRIAN R,DOMIS L D S,et al.Beyond the plankton ecology group (PEG) Model:mechanisms driving plankton succession[J].The Annual Review of Ecology,Evolution,and Systematics,2012,43:429-48.
[29] 杜桂森,王建厅,武殿伟,等.密云水库的浮游植物群落结构与密度[J].植物生态学报,2001,25(4):501-504.
[30] REYNOLDS C S.2006.Ecology of phytoplankton[M].New York:Cambridge University Press.
[31] 张 怡,胡 韧,肖利娟,等.南亚热带两座不同水文动态的水库浮游植物的功能类群演替比较[J].生态环境学报,2012,21(1):107-117.
[1] 杨洋, 张玮, 潘宏博, 顾琬雯, 郝瑞娟, 熊春晖, 王丽卿. 滆湖轮虫群落结构及其与水环境因子的关系[J]. 长江流域资源与环境, 2017, 26(06): 832-840.
[2] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[3] 胡俊, 郑金秀, 池仕运, 董方勇. 苏皖交界河网区浮游植物群落结构及其与环境因子关系的研究[J]. 长江流域资源与环境, 2017, 26(02): 282-288.
[4] 靳士科, 王娟娟, 朱莎, 张琪, 黎翔, 郑文静, 由文辉. 上海城区六种林地凋落物中土壤动物群落结构[J]. 长江流域资源与环境, 2016, 25(Z1): 1-8.
[5] 郭弘艺, 张旭光, 唐文乔, 李辉华, 沈林宏, 周天舒, 刘东. 长江靖江段刀鲚捕捞量的时间变化及相关环境因子分析[J]. 长江流域资源与环境, 2016, 25(12): 1850-1859.
[6] 汤勇, 张薇, 薛俊增, 陈立婧. 长江口大洋山近岸水域浮游植物群落及其与环境因子的关系[J]. 长江流域资源与环境, 2016, 25(08): 1176-1183.
[7] 于雪, 濮励杰, 许艳, 朱明. 1980~2010年江苏沿海城市土地利用变化及其与环境因子关系分析——以东台市为例[J]. 长江流域资源与环境, 2016, 25(04): 537-543.
[8] 王琦, 欧伏平, 张雷, 卢少勇. 三峡工程运行后洞庭湖水环境变化及影响分析[J]. 长江流域资源与环境, 2015, 24(11): 1843-1849.
[9] 潘晓洁, 黄一凡, 郑志伟, 邹曦, 朱梦灵, 胡莲, 万成炎. 三峡水库小江夏初水华暴发特征及原因分析[J]. 长江流域资源与环境, 2015, 24(11): 1944-1952.
[10] 赖晓明, 廖凯华, 朱青, 吕立刚, 徐飞. 基于Hydrus-1D模型的太湖流域农田系统水分渗漏和氮磷淋失特征分析[J]. 长江流域资源与环境, 2015, 24(09): 1491-1498.
[11] 何小芳, 吴法清, 周巧红, 刘碧云, 张丽萍, 吴振斌. 武汉沉湖湿地水鸟群落特征及其与富营养化关系研究[J]. 长江流域资源与环境, 2015, 24(09): 1499-1506.
[12] 张萌, 祝国荣, 周慜, 李惠民, 陆友伟, 刘足根. 仙女湖富营养化特征与水环境容量核算[J]. 长江流域资源与环境, 2015, 24(08): 1395-1404.
[13] 简敏菲, 简美锋, 李玲玉, 汪斯琛, 余厚平, 余冠军. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子[J]. 长江流域资源与环境, 2015, 24(05): 765-772.
[14] 栾青杉, 孙军. 2005年秋季长江口及其邻近水域浮游植物群集[J]. 长江流域资源与环境, 2010, 19(2): 202-.
[15] 孟顺龙, 陈家长, 胡庚东, 瞿建宏, 吴伟, 范立民, 马晓燕. 太湖蠡湖浮游植物群落特征及其对水质的评价[J]. 长江流域资源与环境, 2010, 19(01): 30-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈 勇,陈国阶,杨定国. 岷江上游聚落分布规律及其生态特征——以四川理县为例[J]. 长江流域资源与环境, 2004, 13(1): 72 -77 .
[2] 陈正洪,万素琴,毛以伟. 三峡库区复杂地形下的降雨时空分布特点分析[J]. 长江流域资源与环境, 2005, 14(5): 623 -627 .
[3] 张磊,董立新,吴炳方,周万村. 三峡水库建设前后库区10年土地覆盖变化[J]. 长江流域资源与环境, 2007, 16(1): 107 -112 .
[4] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[5] 禹 娜,陈立侨,赵泉鸿. 太湖介形类动物丰度与生物量[J]. 长江流域资源与环境, 2008, 17(4): 546 .
[6] 孔令强. 水电工程农村移民入股安置模式初探[J]. 长江流域资源与环境, 2008, 17(2): 185 .
[7] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[8] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[9] 于苏俊,张 继,夏永秋. 基于遗传算法的可持续土地利用动态规划[J]. 长江流域资源与环境, 2006, 15(2): 180 -184 .
[10] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .