长江流域资源与环境 >> 2016, Vol. 25 >> Issue (12): 1850-1859.doi: 10.11870/cjlyzyyhj201612008

• 自然资源 • 上一篇    下一篇

长江靖江段刀鲚捕捞量的时间变化及相关环境因子分析

郭弘艺1, 张旭光1, 唐文乔1, 李辉华1, 沈林宏2, 周天舒1, 刘东1   

  1. 1. 上海海洋大学鱼类研究室, 上海 201306;
    2. 江苏省靖江市渔政管理站, 江苏 靖江 214500
  • 收稿日期:2016-04-13 修回日期:2016-06-24 出版日期:2016-12-20
  • 通讯作者: 唐文乔,E-mail:wqtang@shou.edu.cn E-mail:wqtang@shou.edu.cn
  • 作者简介:郭弘艺(1980~),男,工程师,主要从事保护生物学方面研究.E-mail:hy-guo@shou.edu.cn
  • 基金资助:
    公益性行业(农业)科研专项(201203065)

TEMPORAL VARIATIONS OF COILIA NASUS CATCHES AT JINGJIANG SECTION OF THE YANGTZE RIVER IN FISHING SEASON IN RELATION TO ENVIRONMENTAL FACTORS

GUO Hong-yi1, ZHANG Xu-guang1, TANG Wen-qiao1, LI Hui-hua1, SHEN Lin-hong2, ZHOU Tian-shu1, LIU Dong1   

  1. 1. Laboratory of Fishes, Shanghai Ocean University, Shanghai 201306, China;
    2. Administration of Fishery of Jingjiang, Jingjiang, Jiangsu 214500, China
  • Received:2016-04-13 Revised:2016-06-24 Online:2016-12-20
  • Supported by:
    Special Fund for Agro-Scientific Research in the Public Interest(201203065)

摘要: 江苏靖江段位于长江近口段,是长江刀鲚渔汛最集中的水域。调查了靖江段2008、2009、2012~2015年6个渔汛期的捕捞数据,采用广义可加模型(GAM模型)分析了刀鲚捕捞量与靖江段表层水温、潮差、气压、降水量、浑浊度、CODMn等环境因子之间的相关性。调查显示,靖江段每年发放刀鲚专项渔业捕捞证84~95本,平均年作业天数28~43 d,2012~2015年的作业天数比2008~2009年明显下降。6个渔汛期刀鲚的年捕捞量变幅为3.71~17.38万尾和3.61~18.26 t,除2013年外,年捕捞量总体上仍呈下降趋势。采用GAM模型对10艘持证渔船的刀鲚日捕捞量与环境因子之间的相关性分析显示,日捕捞量随水温的升高而递增,汛期78.8%的产量在15~23.2℃水温范围获得。而当水温低于10℃时,空网率上升,仅获得5.7%的汛期产量。表明当水温不足10℃时,刀鲚可暂时停止其生殖洄游过程。分析还显示,69.1%的汛期产量在2.0 m以上的大潮差期获得,表明潮汐亦是影响刀鲚日捕捞量的重要因子。低浊度及气压、降水量、CODMn等对刀鲚的日捕捞量无显著性影响,但当浊度大于100 NTU时,日捕捞量迅速降低。可见,水温、潮差和高浑浊度是影响长江靖江段汛期刀鲚捕捞量的关键环境因子。

关键词: 长江靖江段, 广义可加模型, 刀鲚产量, 环境因子, 相关性

Abstract: The Japanese grenadier anchovy Coilia nasus (Clupeiformesis) is a highly commercial and valuable anadromous fish species in China. Jingjiang section of the Yangtze River, as an important area for fishery resource conservation and reproduction of Japanese grenadier anchovy, is located at the connected region of lower reaches and estuary of the Yangtze River. In our study, we investigated C. nasus catches of fishing seasons from 2008-2009 and 2012-2015 and analyzed its environmental factors such as tidal range, water temperature, pressure, precipitation, turbidity and CODMn, and reported its upstream migration. According to fishing license recorded, the fishing period extended from 5 March to 10 May, fishing license numbers per year were between 84-95 and fishing days were 28-43 during the entire fishing period in the Yangtze Jingjiang section from 2008, 2009, 2012-2015. Anchovy numbers ranged from about 3.71 to 17.38 ×104 individuals and the annual weight ranged between 3.61 to 18.26 ton respectively. In general, anchovy total annual catch showed a declining trend except for explosive growth during 2013 fishing period. Fishing intensity parameters decreased significantly during 2012-2015 compared to 2008-2009 fishing periods. Generalized additive models indicated that temperature significantly affected catch. Similar variation trend was also found in all fishing periods, and the daily catch increased with increasing water temperature. 78.8% of total catch number were recorded at a temperature between 15-23.2℃ and few individuals were recorded below 10℃.Our result suggested that a temperature<10℃ may inhibit anchovy upstream migration. Tidal range was also an important factor, and daily catch increased with increasing tidal range. 69.1% of total catch number were recorded at tidal above 2.0 m. This may be because upstream migration of anchovy relies on the tidal currents via selective tidal stream transport limiting the energy cost. Turbidity showed a non-linear negative relationship with the daily catch. Sharply declined daily catch were associated with turbidity above 100 NTU. Low turbidity, pressure, precipitation and CODMn did not affect daily catch significantly (P>0.05). Therefore, our findings suggested that tidal range, temperature, and high turbidity significantly affected the catch of C. nasus and accounted for the majority of the daily variation in catch level. Overall, this study is expected to benefit sustainable management of fishery resources and conservation of this species.

Key words: Jingjiang section of the Yangtze River, generalized additive models, catch of Coilia nasus, environmental factor, relativity

中图分类号: 

  • S932.4
[1] 袁传宓. 长江中下游刀鲚资源和种群组成变动状况及其原因[J]. 动物学杂志, 1988, 23(3):12-15.[YUAN C M. Change and species composition of Coilia nasus in the lower reaches of the Yangtze River[J]. Chinese Journal of Zoology, 1988, 23(3):12-15.]
[2] 江苏省水产科学研究所, 安徽省长江水产资源调查小组, 湖北省长江水产研究所. 长江流域刀鲚产卵群体组成的初步研究[M]//长江流域刀鲚资源调查报告(内部资料). 武汉:长江流域刀鲚资源协作组, 1977:22-30.
[3] 张敏莹, 徐东坡, 刘凯, 等. 长江下游刀鲚生物学及最大持续产量研究[J]. 长江流域资源与环境, 2005, 14(6):694-698.[ZHANG M Y, XU D P, LIU K, et al. Studies on biological characteristics and change of resource of Coilia nasus schlegel in the lower reaches of the Yangtze River[J]. Resources and Environment in the Yangtze Basin, 2005, 14(6):694-698.]
[4] 万全, 赖年悦, 李飞, 等. 安徽无为长江段刀鲚生殖洄游群体年龄结构的变化分析[J]. 水生态学杂志, 2009, 2(4):60-65.[WAN Q, LAI N Y, LI F, et al. Analysis on the change of reproductive population composition of Coilia ectenes in Wuwei Section of Anhui in Yangtze River[J]. Journal of Hydroecology, 2009, 2(4):60-65.]
[5] 刘凯, 段金荣, 徐东坡, 等. 长江口刀鲚渔汛特征及捕捞量现状[J]. 生态学杂志, 2012, 31(12):3138-3143.[LIU K, DUAN J R, XU D P, et al. Present situation of Coilia nasus population features and yield in Yangtze River estuary waters in fishing season[J]. Chinese Journal of Ecology, 2012, 31(12):3138-3143.]
[6] 陈卫境, 顾树信. 长江靖江段刀鲚资源调查报告[J]. 水产养殖, 2012, 33(7):10-12.[CHEN W J, GU S X. The Yangtze River in Jingjiang section of Coilia nasus resources investigation report[J]. Journal of Aquaculture, 2012, 33(7):10-12.]
[7] 李辉华, 郭弘艺, 唐文乔, 等. ARIMA模型在预测长江靖江段沿岸鱼类渔获量时间格局中的应用[J]. 水产学报, 2008, 32(6):899-905.[LI H H, GUO H Y, TANG W Q, et al. ARIMA model application to predict temporal pattern of fish catches of coastal area at Jingjiang Reach of the Yangtze River[J]. Journal of Fisheries of China, 2008, 32(6):899-905.]
[8] 牛明香, 李显森, 徐玉成. 基于广义可加模型的时空和环境因子对东南太平洋智利竹筴鱼渔场的影响[J]. 应用生态学报, 2010, 21(4):1049-1055.[NIU M X, LI X S, XU Y C. Effects of spatiotemporal and environmental factors on the fishing ground of Trachurus murphyi in Southeast Pacific Ocean based on generalized additive model[J]. Chinese Journal of Applied Ecology, 2010, 21(4):1049-1055.]
[9] 朱国平, 朱小艳, 徐怡瑛, 等. 基于GAM模型分析夏秋季南奥克尼群岛南极磷虾渔场时空分布及与环境因子之间的关系[J]. 极地研究, 2012, 24(3):266-273.[ZHU G P, ZHU X Y, XU Y Y, et al. The spatiotemporal distribution of fishing grounds for Antarctic krill (Euphausia superba) around the South Orkney islands in Austral summer-autumn and its relation to environmental factors based on a generalized additive model[J]. Chinese Journal of Polar Research, 2012, 24(3):266-273.]
[10] STENSETH N C, MYSTERUD A, OTTERSEN G, et al. Ecological effects of climate fluctuations[J]. Science, 2002, 297(5585):1292-1296.
[11] VENABLES W N, DICHMONT C M. GLMs, GAMs and GLMMs:an overview of theory for applications in fisheries research[J]. Fisheries Research, 2004, 70(2/3):319-337.
[12] CIANNELLI L, CHAN K S, BAILEY K M, et al. Nonadditive effects of the environment on the survival of a large marine fish population[J]. Ecology, 2004, 85(12):3418-3427.
[13] FAUCHALD P, ERIKSTAD K E, SKARSFJORD H. Scale-dependent predator-prey interactions:the hierarchical spatial distribution of seabirds and prey[J]. Ecology, 2000, 81(3):773-783.
[14] 陈新军, 田思泉. 利用GAM模型分析表温和时空因子对西北太平洋海域柔鱼资源状况的影响[J]. 海洋湖沼通报, 2007(2):104-113.[CHEN X J, TIAN S Q. Effects of SST and temp-spatial factors on abundance of nylon flying squid Ommastrephes bartrami in the Northwestern Pacific using generalized additive models[J]. Transactions of Oceanology and Limnology, 2007(2):104-113.]
[15] 赵静, 章守宇, 汪振华, 等. 基于GAM模型的鱼类群落多样性分布及影响因素[J]. 生态学杂志, 2013, 32(12):3226-3235.[ZHAO J, ZHANG S Y, WANG Z H, et al. Fish community diversity distribution and its affecting factors based on GAM model[J]. Chinese Journal of Ecology, 2013, 32(12):3226-3235.]
[16] 宋利明, 武亚苹. 基于GAM的吉尔伯特群岛海域黄鳍金枪鱼栖息地综合指数[J]. 水产学报, 2013, 37(8):1250-1261.[SONG L M, WU Y P. An integrated habitat index for yellowfin tuna in waters near Gilbert Islands based on GAM[J]. Journal of Fisheries of China, 2013, 37(8):1250-1261.]
[17] DASKALOV G. Relating fish recruitment to stock biomass and physical environment in the Black Sea using generalized additive models[J]. Fisheries Research, 1999, 41(1):1-23.
[18] HWANG S D, LEE T W, CHOI I S, et al. Environmental factors affecting the daily catch levels of Anguilla japonica glass eels in the Geum River Estuary, South Korea[J]. Journal of Coastal Research, 2014, 30(5):954-960.
[19] MITCHELL J D, COLLINS K J, MILLER P I, et al. Quantifying the impact of environmental variables upon catch per unit effort of the blue shark Prionace glauca in the western English Channel[J]. Journal of Fish Biology, 2014, 85(3):657-670.
[20] 田思泉, 田芝清, 高春霞, 等. 长江口刀鲚汛期特征及其资源状况的年际变化分析[J]. 上海海洋大学学报, 2014, 23(2):245-250.[TIAN S Q, TIAN Z Q, GAO C X, et al. Analyzing of annual changes for the stock status of Coilia nasus in fishing season in Yangtze River estuary[J]. Journal of Shanghai Ocean University, 2014, 23(2):245-250.]
[21] 郭弘艺, 唐文乔. 长江口刀鲚矢耳石重量与年龄的关系及其在年龄鉴定中的作用[J]. 水产学报, 2006, 30(3):347-352.[GUO H Y, TANG W Q. The relationship between sagittal otolith weight-age and its use in age determination in Coilia nasus from the estuary of Yangtze River[J]. Journal of Fisheries of China, 2006, 30(3):347-352.]
[22] 郭弘艺, 周天舒, 唐文乔, 等. 长江近口段沿岸刀鲚生物量的时间格局[J]. 长江流域资源与环境, 2015, 24(4):565-571.[GUO H Y, ZHOU T S, TANG W Q, et al. Temporal pattern of Coilia nasus biomass along the Jingjiang section of the Yangtze river over the last decade[J]. Resources and Environment in Yangtze Basin, 2015, 24(4):565-571.]
[23] 郭弘艺, 沈林宏, 唐文乔, 等. 基于渔捞日志的长江靖江段刀鲚渔获量的时空特征分析[J]. 上海海洋大学学报, 2014, 23(5):774-781.[GUO H Y, SHEN L H, TANG W Q, et al. Distribution characteristics and temporal and spatial changes of Coilia nasus catches at Jingjiang section of the Yangtze River in fishing season based on the data from fishing log[J]. Journal of Shanghai Ocean University, 2014, 23(5):774-781.]
[24] 管卫兵, 陈辉辉, 丁华腾, 等. 长江口刀鲚洄游群体生殖特征和条件状况研究[J]. 海洋渔业, 2010, 32(1):73-81.[GUAN W B, CHEN H H, DING H T, et al. Reproductive characteristics and conditions of anadromous Coilia ectenes (Engraulidae) in Yangtze estuary[J]. Marine Fisheries, 2010, 32(1):73-81.]
[25] 袁传宓. 刀鲚的生殖洄游[J]. 生物学通报, 1987, 12:1-3.[YUAN C M. Reproduction migration of Coilia ectenes[J]. Bulletin of Biology, 1987, 12:1-3.]
[26] 郑飞, 郭弘艺, 唐文乔, 等. 溯河洄游的长江刀鲚种群的年龄结构及其生长特征[J]. 动物学杂志, 2012, 47(5):24-31.[ZHENG F, GUO H Y, TANG W Q, et al. Age structure and growth characteristics of anadromous populations of Coilia nasus in the Yangtze River[J]. Chinese Journal of Zoology, 2012, 47(5):24-31.]
[27] 董文霞, 唐文乔, 王磊. 长江刀鲚繁殖群体的生长特性[J]. 上海海洋大学学报, 2014, 23(5):669-674.[DONG W X, TANG W Q, WANG L. Growth characteristics of reproductive population of Coilia nasus in the Yangtze River[J]. Journal of Shanghai Ocean University, 2014, 23(5):669-674.]
[28] ZHU G L, WANG L J, TANG W Q, et al. De Novo transcriptomes of olfactory epithelium reveal the genes and pathways for spawning migration in Japanese grenadier anchovy (Coilia nasus)[J]. PLoS One, 2014, 9(8):e103832.
[29] LIU D, LI Y Y, TANG W Q, et al. Population structure of Coilia nasus in the Yangtze River revealed by insertion of short interspersed elements[J]. Biochemical Systematics and Ecology, 2014, 54:103-112.
[30] 魏广莲, 徐钢春, 顾若波, 等. 不同人工饲料对刀鲚幼鱼生长、血清生化指标及脂质代谢酶活性的影响[J]. 应用生态学报, 2013, 24(12):3567-3573.[WEI G L, XU G C, GU R B, et al. Effects of diets on growth, serum biochemical indices and lipid metabolism in Coilia nasus fingerlings[J]. Chinese Journal of Applied Ecology, 2013, 24(12):3567-3573.]
[31] WOOD S. Generalized additive models:an introduction with R[M]. London:CRC Press, 2006, 119-265.
[32] SWARTZMAN G, HUANG C S, KALUZNY S. Spatial analysis of Bering Sea groundfish survey data using generalized additive models[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49(7):1366-1378.
[33] 蒋日进, 钟俊生, 张冬良, 等. 长江口沿岸碎波带仔稚鱼的种类组成及其多样性特征[J]. 动物学研究, 2008, 29(3):297-304.[JIANG R J, ZHONG J S, ZHANG D L, et al. Species composition and diversity of fish larvae and juveniles in the surf zone of the Yangtze river estuary[J]. Zoological Research, 2008, 29(3):297-304.]
[34] 钟俊生, 郁蔚文, 刘必林, 等. 长江口沿岸碎波带仔稚鱼种类组成和季节性变化[J]. 上海海洋大学学报, 2005, 14(4):375-382.[ZHONG J S, YU W W, LIU B L, et al. Seasonal occurrences of fish larvae and juveniles in the surf zone of the Yangtze River estuary[J]. Journal of Shanghai Fisheries University, 2005, 14(4):375-382.]
[35] FORWARD R B, TANKERSLEY R A. Selective tidal-stream transport of marine animals[J]. Oceanography and Marine Biology, 2001, 39:305-353.
[1] 杨洋, 张玮, 潘宏博, 顾琬雯, 郝瑞娟, 熊春晖, 王丽卿. 滆湖轮虫群落结构及其与水环境因子的关系[J]. 长江流域资源与环境, 2017, 26(06): 832-840.
[2] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[3] 陈优良, 陶天慧, 丁鹏. 长江三角洲城市群空气质量时空分布特征[J]. 长江流域资源与环境, 2017, 26(05): 687-697.
[4] 杨雪婷, 方一平, 邱孝枰, 朱付彪. 川西山区交通与GDP的海拔梯度性及其相关关系[J]. 长江流域资源与环境, 2017, 26(04): 530-539.
[5] 周志高, 林爱文, 王伦澈. 长江中游城市群太阳辐射长期变化特征及其与气象要素的关系研究[J]. 长江流域资源与环境, 2017, 26(04): 563-571.
[6] 胡俊, 郑金秀, 池仕运, 董方勇. 苏皖交界河网区浮游植物群落结构及其与环境因子关系的研究[J]. 长江流域资源与环境, 2017, 26(02): 282-288.
[7] 靳士科, 王娟娟, 朱莎, 张琪, 黎翔, 郑文静, 由文辉. 上海城区六种林地凋落物中土壤动物群落结构[J]. 长江流域资源与环境, 2016, 25(Z1): 1-8.
[8] 刘世杰, 苏舒, 梁亮, 童小华. 基于植被状态指数的干旱化特征及气候驱动因素分析——以江苏省为例[J]. 长江流域资源与环境, 2016, 25(12): 1927-1933.
[9] 于雪, 濮励杰, 许艳, 朱明. 1980~2010年江苏沿海城市土地利用变化及其与环境因子关系分析——以东台市为例[J]. 长江流域资源与环境, 2016, 25(04): 537-543.
[10] 刘晓霞, 周天舒, 唐文乔. 长江近口段沿岸4种珍稀、重要鱼类的资源动态[J]. 长江流域资源与环境, 2016, 25(04): 552-559.
[11] 唐昀凯, 刘胜华. 城市土地利用类型与PM2.5浓度相关性研究——以武汉市为例[J]. 长江流域资源与环境, 2015, 24(09): 1458-1463.
[12] 赵丽红, 陈文波, 邵虹. 南昌市中心城区城市建设用地集约利用特征及空间相关性分析[J]. 长江流域资源与环境, 2015, 24(08): 1286-1292.
[13] 张勃, 王东, 王桂钢, 马琼, 张国斌, 季定民. 西南地区近14 a植被覆盖变化及其与气候因子的关系[J]. 长江流域资源与环境, 2015, 24(06): 956-964.
[14] 盛海燕, 姚佳玫, 何剑波, 刘明亮, 韩轶才, 虞左明. 浙江青山水库浮游植物群落结构变化及与环境因子的关系[J]. 长江流域资源与环境, 2015, 24(06): 978-986.
[15] 简敏菲, 简美锋, 李玲玉, 汪斯琛, 余厚平, 余冠军. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子[J]. 长江流域资源与环境, 2015, 24(05): 765-772.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[2] 胡学玉, 孙宏发, 陈德林. 铜绿山矿冶废弃地优势植物重金属的积累与迁移[J]. 长江流域资源与环境, 2008, 17(3): 436 .
[3] 宋述军,周万村. 岷江流域土地利用结构对地表水水质的影响[J]. 长江流域资源与环境, 2008, 17(5): 712 .
[4] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[5] 王学雷,蔡述明,任宪友,陈世俭. 三峡库区湿地生态建设与保护利用[J]. 长江流域资源与环境, 2004, 13(2): 149 -153 .
[6] 尹占娥,许世远. 上海浦东新区土地利用变化及其生态环境效应[J]. 长江流域资源与环境, 2007, 16(4): 430 .
[7] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[8] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[9] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[10] 罗璐琴, 周敬宣, 李湘梅. 生态足迹动态预测模型构建与分析[J]. 长江流域资源与环境, 2008, 17(3): 440 .