长江流域资源与环境 >> 2015, Vol. 24 >> Issue (11): 1860-1869.doi: 10.11870/cjlyzyyhj201511008

• 自然资源 • 上一篇    下一篇

贡嘎山亚高山降水稳定同位素特征及水汽来源研究

宋春林1,2, 孙向阳1, 王根绪1   

  1. 1. 中国科学院水利部成都山地灾害与环境研究所, 四川 成都 610041;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2015-01-13 修回日期:2015-02-12 出版日期:2015-11-20
  • 通讯作者: 王根绪,E-mail:wanggx@imde.ac.cn E-mail:wanggx@imde.ac.cn
  • 作者简介:宋春林(1989~),男,研究生博士,主要从事山地水文与生态研究.E-mail:scl@songchunlin.net
  • 基金资助:
    国家自然科学基金项目(41401044,41340013)

A STUDY ON PRECIPITATION STABLE ISOTOPES CHARACTERISTICS AND VAPOR SOURCES OF THE SUBALPINE GONGGA MOUNTAIN, CHINA

SONG Chun-lin1,2, SUN Xiang-yang1, WANG Gen-xu1   

  1. 1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-01-13 Revised:2015-02-12 Online:2015-11-20

摘要: 为揭示青藏高原东南缘贡嘎山地区的大气降水稳定同位素特征和水汽来源,利用贡嘎山东坡亚高山地区2012年5月至10月实测的大气降水稳定氢氧同位素和气象资料,分析了贡嘎山地区的降水线特征、降水稳定氢氧同位素时空分异特征及其与气候因子之间的关系和氘盈余特征,并运用HYSPLIT模型探讨了该区的水汽来源特点。结果表明:贡嘎山亚高山地区大气降水线方程为δD=9.401 9×δ18O+28.530 3(‰)(R2=0.983 3,p < 0.001),反映了该区湿润、多雨、气温较低的气候特点;该区大气降水稳定氢氧同位素季节变化明显,雨季先降低后升高;降水中氢氧同位素的高程效应显著且存在季节差异;降水稳定氢氧同位素受温度、降水气象因子影响较大,降水量效应显著并且与温度存在负相关关系;后向轨迹模型模拟结合同位素特征分析表明该地区雨季水汽来源较为复杂,主要有西风输送、东部季风和局地水汽内循环3个来源。研究结果可为区域水汽循环和降水特征提供科学依据。

关键词: 贡嘎山, 降水, 稳定氢氧同位素, 大气降水线, 水汽来源

Abstract: The stable isotopic composition of precipitation are integrated tracers of atmospheric processes worldwide. It is widely used to determine vapor sources with precipitation stable hydrogen and oxygen isotopes. More than 20 stations in the Tibetan Plateau has been studied the precipitation isotopic composition since the 1990s. But the precipitation isotope characteristics and water vapor moving patterns in Tibetan Plateau southeast edge of Gongga Mountain remains unclear. Based on the precipitation samples and detailed meteorological data in subalpine area of Gongga Mountain from May 2012 to October 2012, we analyzed the temporal and spatial variation of δD and δ18O. Meanwhile, the water vapor sources of Gongga Mountain was tracked by HYSPLIT model with backwards trajectory method and the modeled trajectories was synthesized with δD and δ18O values. The results shows that the LMWL(Local Meteoric Water Line) of this region is δD = 9.4019 × δ18O + 28.5303(‰)( R2= 0.9833,p < 0.001). This LWML's slope and interception is higher than the GMWL (Global Meteoric Water Line), which is caused by the rainy and relatively low temperature meteorological characteristics of the subalpine area of Gongga Mountain. Both δD and δ18O decreases when the mountain elevation rises, which is because both temperature and precipitation amount changes along the elevation. This "altitude effect" differs in different months. The δD and δ18O of this region are both high when rainy season begins and ends. The highest radiation at august leads to a small peak on hydrogen and oxygen isotope curves. Statistical analysis indicates that the relationships between stable precipitation isotopes and meteorological factors are closely related. When the temperature and precipitation amount rises, both hydrogen and oxygen isotopes decreases. Besides, hydrogen and oxygen isotopes are negatively and positively correlated with water vapor pressure and wind velocity, respectively. Monthly deuterium excess data shows no "altitude effect" and no differences with global average deuterium excess value 10‰. Backwards trajectory analysis associated with the isotope data reveal that the vapor sources of this area are mainly from westerly transport, eastern monsoon and local evaporation. This pattern is similar to Tibetan Plateau and Himalayas. The results can provide a scientific basis for the study of hydrological and atmospheric processes in alpine ecosystem.

Key words: Gongga Mountain, precipitation, stable hydrogen and oxygen isotopes, eoric water line, water vapor sources

中图分类号: 

  • P332.1
[1] ERIKSSON E. Deuterium and oxygen-18 in precipitation and other natural waters some theoretical considerations[J]. Tellus, 1965, 17(4): 498-512.
[2] DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
[3] 宋献方,柳鉴容,孙晓敏,等.基于cern的中国大气降水同位素观测网络[J].地球科学进展,2007,22(7):738-747.
[4] YAO T D, MASSON-DELMOTTE V, GAO J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013, 51(4): 525-548.
[5] YU W S, YAO T D, TIAN L D, et al. Stable isotope variations in precipitation and moisture trajectories on the western Tibetan Plateau, China[J]. Arctic Antarctic and Alpine Research, 2007, 39(4): 688-693.
[6] YU W S, YAO T D, TIAN L D, et al. Relationships between δ18O in precipitation and air temperature and moisture origin on a south-north transect of the Tibetan Plateau[J]. Atmospheric Research, 2008, 87(2): 158-169.
[7] TIAN L D, YAO T D, MACCLUNE K, et al. Stable isotopic variations in west China: A consideration of moisture sources[J]. Journal of Geophysical Research-Atmospheres, 2007, 112(D10): D10112.
[8] TIAN L D, MASSON-DELMOTTE V, STIEVENARD M, et al. Tibetan plateau summer monsoon northward extent revealed by measurements of water stable isotopes[J]. Journal of Geophysical Research-Atmospheres, 2001, 106(D22): 28081-28088.
[9] 柳鉴容,宋献方,袁国富,等.中国东部季风区大气降水δ18O的特征及水汽来源[J].科学通报,2009,54(22):3521-3531.
[10] TIAN L D, YAO T D, WHITE J W C, et al. Westerly moisture transport to the middle of himalayas revealed from the high deuterium excess[J]. Chinese Science Bulletin, 2005, 50(10): 1026-1030.
[11] DRAXLER R R, ROLPH G D. HYSPLIT (Hybrid single-particle lagrangian integrated trajectory) model access via noaa arl ready website[M]. Silver Spring MD: NOAA Air Resources Laboratory, 2003.
[12] 陈中笑,程 军,郭品文,等.中国降水稳定同位素的分布特点及其影响因素[J].大气科学学报,2010,36(6):667-679.
[13] 李 广,章新平,张新主,等.云南腾冲地区大气降水中氢氧稳定同位素特征[J].长江流域资源与环境,2013,22(11):1458-1465.
[14] 孟玉川,刘国东.长江流域降水稳定同位素的云下二次蒸发效应[J].水科学进展,2010,21(3):327-334.
[15] 章新平,姚檀栋.青藏高原东北地区现代降水中δD与δ18O的关系研究[J].冰川冻土,1996,18(4):360-365.
[16] 马 潜,张明军,王圣杰,等.基于氢氧同位素的中国东南部降水局地蒸发水汽贡献率[J].地理科学进展,2013,32(11):1712-1720.
[17] 田立德,姚檀栋,孙维贞,等.青藏高原南北降水中δD和δ18O关系及水汽循环[J].中国科学(D辑),2001,31(3):214-220.
[18] SIEGENTHALER U, OESCHGER H. Correlation of 18O in precipitation with temperature and altitude[J]. Nature, 1980, 285(5763): 314-317.
[19] ARAGUÁS-ARAGUÁS L, FROEHLICH K, ROZANSKI K. Stable isotope composition of precipitation over southeast asia[J]. Journal of Geophysical Research-Atmospheres, 1998, 103(D22): 28721-28742.
[20] 姚檀栋,周 行,杨晓新.印度季风水汽对青藏高原降水和河水中δ18O高程递减率的影响[J].科学通报,2009,54(15):2124-2130.
[21] 田立德,姚檀栋,张寅生,等.希夏邦马夏季降水中水化学特征[J].环境科学,1998,19(6):1-5.
[22] 刘忠方,田立德,姚檀栋,等.雅鲁藏布江流域降水中δ18O的时空变化[J].地理学报,2007,62(5):510-517.
[23] KUMAR U S, KUMAR B, RAI S P, et al. Stable isotope ratios in precipitation and their relationship with meteorological conditions in the Kumaon Himalayas, India[J]. Journal of Hydrology, 2010, 391(1/2): 1-8.
[24] 章新平,刘晶淼,孙维贞,等.中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J].中国科学D辑,2006,36(9):850-859.
[25] JOHNSON K R, INGRAM B L. Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: Implications for paleoclimate reconstructions[J]. Earth and Planetary Science Letters, 2004, 220(3/4): 365-377.
[26] BOWEN G J. Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries[J]. Journal of Geophysical Research, 2008, 113(D5): D05113.
[27] 张应华,仵彦卿.黑河流域中上游地区降水中氢氧同位素与温度关系研究[J].干旱区地理,2007,30(1):16-21.
[28] WEN X F, ZHANG S C, SUN X M, et al. Water vapor and precipitation isotope ratios in Beijing, China[J]. Journal of Geophysical Research, 2010, 115: D01103.
[29] CRAIG H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465): 1702-1703.
[30] WELP L R, LEE X H, GRIFFIS T J, et al. A meta-analysis of water vapor deuterium-excess in the midlatitude atmospheric surface layer[J]. Global Biogeochemical Cycles, 2012, 26: GB3021.
[31] LAI C -T, EHLERINGER J R. Deuterium excess reveals diurnal sources of water vapor in forest air[J]. Oecologia, 2011, 165(1): 213-223.
[32] JOUZEL J, MERLIVAT L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effect during snow formation[J]. Journal of Geophysical Research, 1984, 89(D7): 11749-11757.
[33] 章新平,刘晶淼,中尾正义,等.我国西南地区降水中过量氘指示水汽来源[J].冰川冻土,2009,31(4):613-619.
[34] 孙向阳,王根绪,李 伟,等.贡嘎山亚高山演替林林冠截留特征与模拟[J].水科学进展,2011,22(1):23-29.
[35] 孙向阳.贡嘎山峨眉冷杉生态系统水碳关系及时空分异机制[D].北京:中国科学院研究生院,2013.
[36] 王 涛,张洁茹,刘 笑,等.南京大气降水氧同位素变化及水汽来源分析[J].水文,2013,33(4):25-31.
[37] BRIMELOW J C, REUTER G W. Transport of atmospheric moisture during three extreme rainfall events over the mackenzie river basin[J]. Journal of Hydrometeorology, 2005, 6(4): 423-440.
[38] DESHPANDE R D, BHATTACHARYA S K, JANI R A, et al. Distribution of oxygen and hydrogen isotopes in shallow groundwaters from Southern India: Influence of a dual monsoon system[J]. Journal of Hydrology, 2003, 271(1/4): 226-239.
[39] 田立德,姚檀栋,NUMAGUTI A,等.青藏高原南部季风降水中稳定同位素波动与水汽输送过程[J].中国科学(D辑),2001,31(增刊):215-220.
[1] 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686.
[2] 陈红. 长江中下游夏季极端降水事件频次的统计降尺度模拟与预估[J]. 长江流域资源与环境, 2017, 26(05): 771-777.
[3] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[4] 潘欣, 尹义星, 王小军. 1960~2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(03): 436-444.
[5] 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142-149.
[6] 徐明, 王晓芳, 高琦, 汪小康, 赖安伟. 基于TRMM卫星资料揭示的长江流域梅雨季节降水日变化[J]. 长江流域资源与环境, 2016, 25(12): 1934-1944.
[7] 黄钰瀚, 张增信, 费明哲, 金秋. TRMM 3B42卫星降水数据在赣江流域径流模拟中的应用[J]. 长江流域资源与环境, 2016, 25(10): 1618-1625.
[8] 龚艳冰, 戴靓靓, 胡娜, 刘高峰, 张继国. 基于云推理和模糊逻辑关系模型的干旱等级预测方法研究[J]. 长江流域资源与环境, 2016, 25(08): 1273-1278.
[9] 陈阿娇, 贺新光, 秦建新, 章新平. 长江流域近51a来日降水时空变异的多尺度特征[J]. 长江流域资源与环境, 2016, 25(05): 794-803.
[10] 翟菁, 刘慧娟, 黄勇, 邱学兴, 霍彦峰. 安徽省热对流短时强降水的判别与特征分析[J]. 长江流域资源与环境, 2016, 25(05): 837-844.
[11] 丁文荣. 环洱海地区气候变化特征研究[J]. 长江流域资源与环境, 2016, 25(04): 599-605.
[12] 唐宝琪, 延军平, 李双双, 刘永林. 近55年来华东地区旱涝时空变化特征[J]. 长江流域资源与环境, 2016, 25(03): 497-505.
[13] 彭俊翔, 伍永年, 胡维平, 邓建才. 长荡湖近61a降水量演化特征[J]. 长江流域资源与环境, 2016, 25(02): 292-299.
[14] 杨旭, 刘志武, 李波. 多源降水数据在长江上游流域比较研究[J]. 长江流域资源与环境, 2016, 25(01): 131-139.
[15] 刘佳, 马振峰, 杨淑群, 杨小波, 李小兰. 1961~2010年大渡河流域极端降水事件变化特征[J]. 长江流域资源与环境, 2015, 24(12): 2166-2176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐宪立,张科利,孔亚平,陈济丁. 重庆市骨架公路网规划生态环境影响评价[J]. 长江流域资源与环境, 2006, 15(1): 107 -111 .
[2] 聂 坚, 白永平, 孙 克, 王世金. “红三角”地区城镇体系结构分形研究[J]. 长江流域资源与环境, 2008, 17(5): 673 .
[3] 张美玲,梁 虹,祝 安. 贵州省水资源承载力的空间地域差异[J]. 长江流域资源与环境, 2008, 17(1): 68 .
[4] 董方勇, 胡传林, 黄道明. 三峡水库水质保护与渔业利用关系探讨[J]. 长江流域资源与环境, 2006, 15(1): 93 -96 .
[5] 毕东苏, 郑广宏, 顾国维, 郭小品. 城市生态系统承载理论探索与实证——以长江三角洲为例[J]. 长江流域资源与环境, 2005, 14(4): 465 -469 .
[6] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[7] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[8] 王琳莉,陈 星. 一种新的汛期降水集中期划分方法[J]. 长江流域资源与环境, 2006, 15(3): 352 -355 .
[9] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[10] 敖荣军,. 中国地区经济差距及其演化的产业变动因素[J]. 长江流域资源与环境, 2007, 16(4): 420 .