长江流域资源与环境 >> 2016, Vol. 25 >> Issue (08): 1273-1278.doi: 10.11870/cjlyzyyhj201608014

• 自然灾害 • 上一篇    下一篇

基于云推理和模糊逻辑关系模型的干旱等级预测方法研究

龚艳冰1,2, 戴靓靓1, 胡娜1, 刘高峰1,2, 张继国1,2   

  1. 1. 河海大学水利信息统计与管理研究所, 江苏 常州 213022;
    2. 江苏省"世界水谷"与水生态文明协同创新中心, 江苏 南京 211100
  • 收稿日期:2015-11-25 修回日期:2016-01-19 出版日期:2016-08-20
  • 作者简介:龚艳冰(1979~),男,副教授,博士,主要研究方向为水旱灾害管理.E-mail:yanbg78@163.com
  • 基金资助:
    国家自然科学基金项目(71303074);江苏省社会科学基金项目(14GLC004);江苏省自然科学基金项目(BK20130242);中央高校基本科研业务费项目(2015B23914,2015B28014)

STUDY ON DROUGHT CLASS PREDICTION METHOD BASED ON THE CLOUD REASONING AND FUZZY LOGIC RELATION MODEL

GONG Yan-bing1,2, DAI Liang-liang1, HU Na1, LIU Gao-feng1,2, ZHANG Ji-guo1,2   

  1. 1. Institute of Hydraulic Information Statistic and Management, Hohai University, Changzhou 213022, China;
    2. Jiangsu Provincial Collaborative Innovation Center of World Water Valley and Water Ecological Civilization, Nanjing 211100, China
  • Received:2015-11-25 Revised:2016-01-19 Online:2016-08-20
  • Supported by:
    National Nature Science Foundation of China (No. 71303074);Social Science Foundation of Jiangsu Province of China (No. 14GLC004);Natural Science Foundation of Jiangsu Province of China (No. BK20130242);Fundamental Research Fund for the Central University of China (Nos. 2015B23914, 2015B28014)

摘要: 针对月平均降水量时间序列存在模糊性和随机性的特点,给出一种结合云推理和模糊逻辑关系的干旱等级预测方法。采用徐州站1951~2014年逐月降水量数据,通过计算标准化降水指数(SPI),得到实测干旱等级序列,以1952~2013年SPI指数数据作为样本数据,并提取样本模糊时间序列的52条模糊逻辑推理规则,将某月份的SPI指数数据作为输入变量,利用云发生器进行云推理,得到未来相应月份的干旱等级预测结果。结果表明,研究方法对干旱发生具有一定预测能力,尤其是对无旱的预测比较准确,但是对于干旱状态突变的预测能力较弱,主要是由于发生严重旱灾的可能性较少,导致模糊推理规则较少。因此,对于江苏省以轻旱为主的苏北地区,可以作为早期干旱预警的参考。

关键词: 标准化降水指数, 云推理, 模糊逻辑关系, 干旱预测

Abstract: For the monthly average precipitation time series having the features of the fuzziness and randomness, a drought class prediction combination method based on the cloud reasoning and fuzzy logic relation are given. By calculating the standardized precipitation index (SPI) of Xuzhou station monthly precipitation data from 1951 to 2014, we get the measured drought grade sequence. We use SPI data from1952 to 2013 as the sample data, and extract 52 fuzzy logic inference rules of the fuzzy time series. The SPI data of a month is used as the input variable, and the cloud generator is used to obtain the forecast result of the drought level in the future. The results show that this method has certain prediction ability for drought occurrence, especially for no drought prediction, which is more accurate. But it is weak for the drought state mutations prediction, mainly due to the possibility of a severe drought is less, resulting in a less fuzzy inference rules. Therefore, it can be used as a reference for early warning of drought in northern Jiangsu Province, which is given priority to the light drought.

Key words: SPI, cloud reasoning, fuzzy logic relation, drought class prediction

中图分类号: 

  • P338
[1] MCKEE T B, DOESKEN N J, KLEIST J. The relationship of drought frequency and duration to time scales[C]//Proceedings of the 8th Conference on Applied Climatology. California: American Meteorological Society, 1993.
[2] 韩萍, 王鹏新, 王彦集, 等. 多尺度标准化降水指数的ARIMA模型干旱预测研究[J]. 干旱地区农业研究, 2008, 26(2): 212-218.[HAN P, WANG P X, WANG Y J, et al. Drought forecasting based on the standardized precipitation index at different temporal scales using ARIMA models[J]. Agricultural Research in the Arid Areas, 2008, 26(2): 212-218.]
[3] 田苗, 王鹏新, 韩萍, 等. 基于SARIMA模型和条件植被温度指数的干旱预测[J]. 农业机械学报, 2013, 44(2): 109-116.[TIAN M, WANG P X, HAN P, et al. Drought forecasts based on SARIMA models and vegetation temperature condition index[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(2): 109-116.]
[4] 王彦集, 刘峻明, 王鹏新, 等. 基于加权马尔可夫模型的标准化降水指数干旱预测研究[J]. 干旱地区农业研究, 2007, 25(5): 198-203.[WANG Y J, LIU J M, WANG P X, et al. Prediction of drought occurrence based on the standardized precipitation index and the Markov Chain Model with weights[J]. Agricultural Research in the Arid Areas, 2007, 25(5): 198-203.]
[5] 吕小俊, 谢海平, 木绍良. 基于灰色灾变理论的云南省干旱气候预测研究[J]. 数学的实践与认识, 2015, 45(1): 164-168.[LV X J, XIE H P, MU S L. Study drought climate in Yunnan province based on gray system theory[J]. Mathematics in Practice and Theory, 2015, 45(1): 164-168.]
[6] 田苗, 王鹏新, 侯姗姗, 等. 基于相空间重构与RBF神经网络模型的面上干旱预测研究[J]. 干旱地区农业研究, 2013, 31(6): 164-168, 180.[TIAN M, WANG P X, HOU S S, et al. Research of regional drought forecasting based on phase space reconstruction and RBF neural network model[J]. Agricultural Research in the Arid Areas, 2013, 31(6): 164-168, 180.]
[7] 冯平, 胡荣, 李建柱. 基于三维对数线性模型的气象干旱等级预测研究[J]. 水利学报, 2014, 45(5): 505-512.[FENG P, HU R, LI J Z. Meteorological drought grade prediction using three-dimensional log-linear models[J]. Journal of Hydraulic Engineering, 2014, 45(5): 505-512.]
[8] 胡荣, 冯平, 李一兵. 流域水文干旱等级预测问题的研究[J]. 自然灾害学报, 2015, 24(2): 147-156.[HU R, FENG P, LI Y B. Study on drought class prediction problem in basin[J]. Journal of Natural Disasters, 2015, 24(2): 147-156.]
[9] 彭高辉, 张振伟, 马建琴. 基于可公度理论的安徽省干旱预测[J]. 水电能源科学, 2012, 30(9): 6-8.[PENG G H, ZHANG Z W, MA J Q. Drought prediction in Anhui province based on commensurability theory[J]. Water Resources and Power, 2012, 30(9): 6-8.]
[10] 李德毅, 杜鹢. 不确定性人工智能[M]. 北京: 国防工业出版社, 2005.[LI D Y, DU Y. Artificial intelligence with uncertainty[M]. Beijing: National Defense Industry Press, 2005.]
[11] SONG Q, CHISSOM B S. Forecasting enrollments with fuzzy time series-part 1[J]. Fuzzy Sets and Systems, 1993, 54(1): 1-9.
[12] CHEN S M. Forecasting enrollments based on fuzzy time series[J]. Fuzzy Sets and Systems, 1996, 81(3): 311-319.
[13] 龚艳冰, 张继国. 基于正态云模型和熵权的人口发展现代化程度综合评价[J]. 中国人口·资源与环境, 2012, 22(1): 138-143.[GONG Y B, ZHANG J G. Comprehensive assessment on population development degree of modernization based on normal cloud model and entropy weight[J]. China Population, Resources and Environment, 2012, 22(1): 138-143.]
[1] 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142-149.
[2] 唐宝琪, 延军平, 李双双, 刘永林. 近55年来华东地区旱涝时空变化特征[J]. 长江流域资源与环境, 2016, 25(03): 497-505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[3] 任雪梅,徐永辉,周 彬,杨达源. 宜宾—重庆段川江高阶地物质来源的定量分析——判别分析在重矿物分析中的应用[J]. 长江流域资源与环境, 2006, 15(3): 330 -334 .
[4] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[5] 徐天宝, 彭静, 李翀. 葛洲坝水利工程对长江中游生态水文特征的影响[J]. 长江流域资源与环境, 2007, 16(1): 72 -75 .
[6] 王红娟,姜加虎,黄 群. 东洞庭湖湿地景观变化研究[J]. 长江流域资源与环境, 2007, 16(6): 732 .
[7] 罗小龙, 陈雯, 金志丰. 南京城郊结合部拓展的机制、问题与对策[J]. 长江流域资源与环境, 2008, 17(2): 175 .
[8] 蒲志仲. 水资源所有权问题研究[J]. 长江流域资源与环境, 2008, 17(4): 561 .
[9] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605 -610 .
[10] 王肇磊, 贺新枝. 晚清时期湖北自然灾害的治理及其经验教训[J]. 长江流域资源与环境, 2009, 18(11): 1080 .