长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 735-741.doi: 10.11870/cjlyzyyhj201505004

• 自然资源 • 上一篇    下一篇

基于DMSP/OLS与土地利用的江苏省人口数据空间化研究

黄杰1, 闫庆武1,2, 刘永伟3   

  1. 1. 江苏师范大学城建与环境学部, 江苏 徐州 221116;
    2. 中国矿业大学环境与测绘学院, 江苏 徐州 221008;
    3. 中山大学地理科学与规划学院, 广东 广州 510275
  • 收稿日期:2014-03-27 修回日期:2014-07-11 出版日期:2015-05-20
  • 作者简介:黄杰(1990~),女,硕士研究生,主要从事人口数据空间化方面的研究.E-mail:jsxzhuangjie@hotamil.com
  • 基金资助:
    教育部人文社会科学研究基金(14YJC840037);全国统计科研计划项目(2012LY186)

MODELING THE POPULATION DENSITY OF JIANGSU PROVINCE BASED ON DMSP/OLS SATELLITE IMAGERY AND LAND USE DATA

HUANG Jie1, YAN Qing-wu1,2, LIU Yong-wei3   

  1. 1. Faculty of Urban and Environmental Science, Jiangsu Normal University, Xuzhou 221116, China;
    2. College of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, China;
    3. School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China
  • Received:2014-03-27 Revised:2014-07-11 Online:2015-05-20
  • Contact: 闫庆武 E-mail:yanqingwu@cumt.edu.cn

摘要: 准确、高分辨率的人口分布信息是人地关系研究的重要前提。人口数据空间化可实现人口统计数据与空间信息集成, 重构人口空间分布特征, 为区域可持续发展研究提供数据支持。基于DMSP/OLS夜间灯光数据与土地利用数据, 以遥感与地理信息系统理论与方法为基础, 采用空间滞后回归模型模拟了江苏省2010年人口空间分布状况, 并得到1 km×1 km的人口密度网格图。通过从县级、乡镇级两种空间尺度对人口数据空间化结果进行检验, 结果表明基于DMSP/OLS与土地利用的人口数据空间化能够正确地表达人口空间分布规律, 尤其对于人口较为密集地区, 具有很高的数据重现精度;但是对于人口密度畸高或畸低的地区, 由于人口空间分布异质性较大, 数据重现的准确性下降。

关键词: 人口数据空间化, 空间滞后回归模型, DMSP/OLS, 土地利用, 江苏省

Abstract: Population is a vital indicator of socioeconomic development and urban development planning, especially for developing countries like China. Accurate and high resolution information of population distribution is an important prerequisite to study human-land relationships. However, census data for any given field are inadequately to demonstrate the internal differences of population distribution. In this paper we tried to solve this problem by spatializing the population across Jiangsu Province, which is located in east China. Spatialization of statistical population is one of the vital means to achieve the integration of demographic data and spatial data. Moreover, it tends to reconstruct the spatial features of demographic statistics and supports the sustainable development of the region by providing relative data. In order to link the field between aggregated census data and geo-coded data, various techniques were used to disaggregate the census data. The satellite-measured DMSP/OLS night-time light imagery has been widely used for regional level mapping of socioeconomic activities due to its high temporal resolution, free availability and wide swath. However, because of the coarse resolution and data saturation of DMSP/OLS data, the limitations of applying this data source need to be taken into account. In this paper, population spatial processing is carried out by means of utilizing the theory and technology of RS and GIS. Specifically, data sources include three aspect: DMSP/OLS (night-time satellite imagery of operational line-scan system sensors on board of the defense meteorological satellite program); land-use data (the data was collected from the global nature recourses and it consists of six kinds and 21 subcategories in Jiangsu Province), and the sixth census data. It is proved that all the resources can be used to acquire the achievement, such as population distribution in certain area in China even in the world. Based on the analysis and the methods discussed above, SLM (Spatial Lag Regression Model) was used for population density estimation. We derived a population distribution map at 1 km×1 km grid cells in Jiangsu Province in 2010. In addition, we get the measures of fit (R-squared) of the model 0.93. According to the experiment, the validation of the resulting maps at county-level and town-level showed that average absolute value is comparatively high especially for those with high population density. That is to say, accuracy assessment results show that the DMSP/OLS night-time satellite data and land use data are suitable for restoration the spatial distribution of population and these data could characterize more explicit details. The accuracy of some region that the study observed tends to decline due to the fact that the population density is either too high or extremely low due to spatial heterogeneity. We conclude that a higher accuracy grid would be generated if more ancillary factors associated with population spatialization were incorporated in the future.

Key words: spatialization of statistical population, spatial lag regression model, DMSP/OLS, land use data, Jiangsu Province

中图分类号: 

  • P951
[1] DEICHMANN U, BALK D, YETMAN G.Transforming population data for interdisciplinary usages:From census to grid[C].Washington (DC):Center for International Earth Science Information Network, 2001.
[2] 廖顺宝, 李泽辉.四川省人口分布与土地利用的关系及人口数据空间化试验[J].长江流域资源与环境, 2004, 13(6):557-561.
[3] 江东, 王乃斌, 刘红辉.人口数据空间化的处理方法[J].地理学报, 2002, 57(B12):70-75.
[4] 江东, 杨小唤, 王乃斌, 等.基于RS、GIS的人口空间分布研究[J].地球科学进展, 2002, 17(5):734-738.
[5] 陈学刚, 杨兆萍.基于GIS的乌鲁木齐市人口空间分布模拟与变化规律研究[J].干旱区资源与环境, 2008, 22(4):12-16.
[6] 刘纪远, 岳天祥, 王英安, 等.中国人口密度数字模拟[J].地理学报, 2003, 58(1):17-24.
[7] 王春菊, 汤小华.基于GIS的福建省人口统计数据空间化[J].地理与地理信息科学, 2004, 20(4):71-74.
[8] 叶宇, 刘高焕, 冯险峰.人口数据空间化表达与应用[J].地球信息科学, 2006, 8(2):59-65.
[9] HARVEY J T.Population estimation models based on individual TM pixels[J].Photogrammetric Engineering and Remote Sensing, 2002, 68(11):1181-1192.
[10] QIU F, SRIDHARAN H, CHUN Y.Spatial autoregressive model for population estimation at the census block level using LIDAR-derived building volume information[J].Cartography and Geographic Information Science, 2010, 37(3):239-257.
[11] LINARD C, GILBERT M, SNOW R W, et al.Population distribution, settlement patterns and accessibility across Africa in 2010[J].PLoS One, 2012, 7(2):e31743.
[12] 韩向娣, 周艺, 王世新, 等.基于夜间灯光和土地利用数据的GDP空间化[J].遥感技术与应用, 2012, 27(3):396-405.
[13] SUTTON P C.A scale-adjusted measure of "urban sprawl" using nighttime satellite imagery[J].Remote Sensing of Environment, 2003, 86(3):353-369.
[14] 陈晋, 卓莉, 史培军.基于DMSP/0LS数据的中国城市化过程研究——反映区域城市化水平的灯光指数的构建[J].遥感学报, 2003, 7(3):168-175.
[15] BRIGGS D J, GULLIVER J, FECHT D, et al.Dasymetric modelling of small-area population distribution using land cover and light emissions data[J].Remote Sensing of Environment, 2007, 108(4):451-466.
[16] 杨续超, 高大伟, 丁明军, 等.基于多源遥感数据及DEM的人口统计数据空间化[J].长江流域资源与环境, 2013, 22(6):729-734.
[17] AMARAL S, CMARA G, MONTEIRO A M V, et al.Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data[J].Computers, Environment and Urban Systems, 2005, 29(2):179-195.
[18] 李景刚, 何春阳, 史培军, 等.基于DMSP/OLS灯光数据的快速城市化过程的生态效应评价研究:以环渤海城市群地区为例[J].遥感学报, 2007, 11(1):115-126.
[19] 卓莉, 陈晋, 史培军, 等.基于夜间灯光数据的中国人口密度模拟[J].地理学报, 2005, 60(2):266-276.
[20] ELVIDGE C D, BAUGH K E, DIETZ J B, et al.Radiance calibration of DMSP-OLS low-light imaging data of human settlements[J].Remote Sensing of Environment, 1999, 68(1):77-88.
[21] SUTTON P C.Progress in empirical measurement of the urban environment:An exploration of the theoretical and empirical advantages of using Nighttime Satellite imagery in Urban Studies[C].4th International Conference on Integrating GIS and Environmental Modeling, 2000.
[22] LO C.Modeling the population of China using DMSP operational linescan system nighttime data[J].Photogrammetric Engineering and Remote Sensing, 2001, 67(9):1037-1047.
[23] 田永中, 陈述彭, 岳天祥, 等.基于土地利用的中国人口密度模拟[J].地理学报, 2004, 59(2):283-292.
[24] 曹丽琴, 李平湘, 张良培.基于DMSP/OLS夜间灯光数据的城市人口估算——以湖北省各县市为例[J].遥感信息, 2009(01):83-87.
[25] ZENG C, ZHOU Y, WANG S, et al.Population spatialization in China based on night-time imagery and land use data[J].International Journal of Remote Sensing, 2011, 32(24):9599-9620.
[26] 梁友嘉, 徐中民.基于LUCC和夜间灯光辐射数据的张掖市甘州区人口空间分布建模[J].冰川冻土, 2012, 34(4):999-1006.
[27] 闫庆武, 卞正富.人口空间分布的异质性测量[J].地理研究, 2009, 28(4):893-900.
[28] 洪国志, 胡华颖, 李郇.中国区域经济发展收敛的空间计量分析[J].地理学报, 2010, 65(12):1548-1558.
[1] 顾铮鸣, 金晓斌, 沈春竹, 金志丰, 周寅康. 近15a江苏省水源涵养功能时空变化与影响因素探析[J]. 长江流域资源与环境, 2018, 27(11): 2453-2462.
[2] 赵 毅, 徐绪堪, 李晓娟. 基于变权灰色云模型的江苏省水环境系统脆弱性评价[J]. 长江流域资源与环境, 2018, 27(11): 2463-2471.
[3] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481-2495.
[4] 高洁芝, 郑华伟, 刘友兆. 基于熵权TOPSIS模型的土地利用多功能性诊断[J]. 长江流域资源与环境, 2018, 27(11): 2496-2504.
[5] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[6] 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914.
[7] 闵敏, 林晨, 熊俊峰, 沈春竹, 金志丰, 马荣华, 许金朵. 不同土地利用模式下洪泽湖流域非点源颗粒态磷负荷时空演变研究[J]. 长江流域资源与环境, 2017, 26(04): 606-614.
[8] 虎陈霞, 郭旭东, 连纲, 张忠明. 长三角快速城市化地区土地利用变化对生态系统服务价值的影响——以嘉兴市为例[J]. 长江流域资源与环境, 2017, 26(03): 333-340.
[9] 李沁, 沈明, 高永年, 张志飞. 基于改进粒子群算法和元胞自动机的城市扩张模拟——以南京为例[J]. 长江流域资源与环境, 2017, 26(02): 190-197.
[10] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[11] 田柳, 陈江龙, 高金龙. 城市空间结构紧凑与土地利用效率耦合分析——以南京市为例[J]. 长江流域资源与环境, 2017, 26(01): 26-34.
[12] 戴刘冬, 周锐, 张凤娥, 王新军. 城市土地利用对居民通勤碳排放的影响研究[J]. 长江流域资源与环境, 2016, 25(Z1): 68-77.
[13] 谢莹, 匡鸿海, 吴晶晶, 程玉丝. 基于CLUE-S模型的重庆市渝北区土地利用变化动态模拟[J]. 长江流域资源与环境, 2016, 25(11): 1729-1737.
[14] 徐磊, 董捷, 张安录. 湖北省土地利用减碳增效系统仿真及结构优化研究[J]. 长江流域资源与环境, 2016, 25(10): 1528-1536.
[15] 毕国华, 杨庆媛, 王兆林, 匡垚瑶, 慕卫东. 丘陵山区都市边缘农村居民点土地利用空间特征分析——以重庆两江新区为例[J]. 长江流域资源与环境, 2016, 25(10): 1555-1565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[3] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[4] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[5] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[9] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .