长江流域资源与环境 >> 2016, Vol. 25 >> Issue (09): 1421-1429.doi: 10.11870/cjlyzyyhj201609013

• 生态环境 • 上一篇    下一篇

三峡水库干流消落带沉积泥沙粒径特征及其物源意义

王彬俨1,2, 严冬春1, 文安邦1, 陈佳村1,2   

  1. 1. 中国科学院水利部成都山地灾害与环境研究所, 四川 成都 610041;
    2. 中国科学院大学, 北京 100049
  • 收稿日期:2015-12-14 修回日期:2016-02-29 出版日期:2016-09-20
  • 通讯作者: 严冬春 E-mail:yandc@imde.ac.cn
  • 作者简介:王彬俨(1988~),男,博士研究生,主要从事水土保持与泥沙淤积研究.E-mail:wangbinyan_1123@126.com
  • 基金资助:
    中国科学院科技服务网络计划项目“三峡水库沉积物内源释放通量及其环境效应”(KFJ-EW-STS-008)、“三峡库区生态清洁小流域建设技术体系试验示范”(KFJ-SW-STS-175);国家自然科学基金“三峡库区支流消落带土-水界面磷素迁移过程与通量”(41430750)

SEDIMENT PARTICLE SIZE IN RIPARIAN ZONE OF THE THREE GORGES RESERVOIR AND ITS IMPLICATION ON SOURCES

WANG Bin-yan1,2, YAN Dong-chun1, WEN An-bang1, CHEN Jia-cun1,2   

  1. 1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-12-14 Revised:2016-02-29 Online:2016-09-20
  • Supported by:
    Science and Technology Services Network of Chinese Academy of Sciences:Endogenous release flux and the related environmental effects of deposition in the Three Gorges Reservoir, Demonstration of technical system in ecologic and clean-type small watersheds construction in the Three Gorges Reservoir;National Natural Science Foundation of China:Phosphorous transfer processes and fluxes via soil-water interface from the water fluctuation zone in branches of the Three Gorges Reservoir

摘要: 为揭示三峡水库干流消落带的泥沙沉积规律、分析沉积泥沙来源,本研究采用原位观测方法采集沉积泥沙样品,利用激光粒度仪测试泥沙粒径,分析沉积泥沙粒径在水平、垂直和高程3个维度上的变化特征,并与三峡水库入库泥沙的粒径特征相结合,阐述消落带沉积泥沙来源。结果表明:(1)三峡水库干流消落带沉积泥沙粒径在水平方向上存在比较强烈的空间变化,中值粒径沿河流流向方向呈逐渐下降趋势,并在忠县及其下游河段基本保持稳定;(2)泥沙粒径随高程的变化存在较大的空间差异,河流挟沙是消落带下部粗颗粒泥沙的主要来源,而消落带上方的土壤侵蚀强度越高,消落带顶部的沉积颗粒就越容易变粗;(3)在水库尾端,泥沙剖面存在较明显的旋迴分层现象,其中值粒径数值较大、变化幅度较宽,越往下游推进,中值粒径的数值越低、变化幅度越小,泥沙旋迴分层现象逐渐消失;(4)水库尾端的沉积泥沙以库区外来沙为主,越往下游推进,库区内产沙对粗颗粒泥沙的贡献逐渐升高,但库区内外来沙都能够为沉积泥沙提供丰富的细颗粒物源,因此,细沙的来源具有一定的复杂性和多样化特征。

关键词: 粒径, 沉积泥沙, 空间变化, 物源, 消落带

Abstract: The main aim of this study is to reveal the regularity and the sources of sediment deposition in the riparian zone of the main stream in the Three Gorges Reservoir. Using in-situ observations and laser particle analyzer, we investigated the particle size of the deposited sediment and its variation in horizontal, vertical and elevational directions in the riparian zone of the Three Gorges Reservoir, and compared the characteristics of grain size between deposited sediment and suspended sediment to reveal the source of deposited sediment studied. The results show that:(1) sediment deposited in the riparian zone of perennial reservoir was significantly finer than that in the fluctuating backwater area, and particle size gradually became finer along the horizontal flow direction and is almost stable in Zhongxian County and its lower reach; (2) fine sediments usually occupied a larger proportion with increasing elevation, but coarse sediments also had great opportunities to take the advantage on the top of the riparian zone if soil erosion above the zone was intense and strong; (3) cyclic layering of the sediment profile was easy to observe in the riparian zone at the end of the reservoir where median size was larger and appears a wider range of variation, while the median size and related range of variation get smaller and cyclic layering of the sediment profile gradually disappeared towards the downstream; (4) deposited sediments in riparian zone of the fluctuating backwater area mainly came from external sources such as Jinsha River and Jialing River, internal sources made greater contribution to coarse sediments in the perennial reservoir area but couldn't be dominant in fine sediments since external sources are also able to supply sufficient matters which makes the source of fine sediments complex and diverse.

Key words: particle size, deposited sediment, spatial variability, sediment sources, riparian zone

中图分类号: 

  • TV145
[1] HUPP C R, OSTERKAMP W R. Riparian vegetation and fluvial geomorphic processes[J]. Geomorphology, 1996, 14(4):277-295.
[2] 中国工程院三峡工程阶段性评估项目组. 三峡工程阶段性评估报告[M]. 北京:中国水利水电出版社, 2010.
[3] 程瑞梅, 王晓荣, 肖文发, 等. 消落带研究进展[J]. 林业科学, 2010, 46(4):111-119. [CHENG R M, WANG X R, XIAO W F, et al. Advances in studies on water-level-fluctuation zone[J]. Scientia Silvae Sinicae, 2010, 46(4):111-119.]
[4] 黄川, 谢红勇, 龙良碧.三峡湖岸消落带生态系统重建模式的研究[J]. 重庆教育学院学报, 2003, 16(3):63-66. [HUANG C, XIE H Y, LONG L B. A research on the lake-bank fluctuating belt's eco-system reconstruction model in the Three Gorges Zone[J]. Journal of Chongqing College of Education, 2003, 16(3):63-66.]
[5] FÖRSTNER U, WITTMANN G T W. Metal pollution in the aquatic environment[M]. Berlin Heidelberg:Springer, 1981.
[6] COOPER C M. Biological effects of agriculturally derived surface water pollutants on aquatic systems-a review[J]. Journal of Environmental Quality, 1993, 22(3):402-408.
[7] PINAY G, RUFFINONI C, FABRE A. Nitrogen cycling in two riparian forest soils under different geomorphic conditions[J]. Biogeochemistry, 1995, 30(1):9-29.
[8] STEIGER J, GURNELL A M. Spatial hydrogeomorphological influences on sediment and nutrient deposition in riparian zones:observations from the Garonne River, France[J]. Geomorphology, 2003, 49(1/2):1-23.
[9] MATTHAEI C D, WELLER F, KELLY D W, et al. Impacts of fine sediment addition to tussock, pasture, dairy and deer farming streams in New Zealand[J]. Freshwater Biology, 2006, 51(11):2154-2172.
[10] BOND N R, DOWNES B J. The independent and interactive effects of fine sediment and flow on benthic invertebrate communities characteristic of small upland streams[J]. Freshwater Biology, 2003, 48(3):455-465.
[11] WOOD P J, VANN A R, WANLESS P J. The response of Melampophylax mucoreus (Hagen) (Trichoptera:Limnephilidae) to rapid sedimentation[J]. Hydrobiologia, 2001, 455(1/3):183-188.
[12] WOOD P J, TOONE J, GREENWOOD M T, et al. The response of four lotic macroinvertebrate taxa to burial by sediments[J]. Archiv für Hydrobiologie, 2005, 163(2):145-162.
[13] PALMER M A, COVICH A P, LAKE S, et al. Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes[J]. Bioscience, 2000, 50(12):1062-1075.
[14] 许炯心. 黄河中游支流悬移质粒度与含沙量、流量间的复杂关系[J]. 地理研究, 2003, 22(1):39-48. [XU J X. Complicated relationships between suspended sediment grain-size, water discharge and sediment concentration in tributaries of middle Yellow River[J]. Geographical Research, 2003, 22(1):39-48.]
[15] 李义天. 冲积河道平面变形计算初步研究[J]. 泥沙研究, 1988(1):34-44. [LI Y T. A primary study on the calculation of two-dimensional river bed deformation in alluvial rivers[J]. Journal of Sediment Research, 1988(1):34-44.]
[16] WU W M, RODI W, WENKA T. 3D numerical modeling of flow and sediment transport in open channels[J]. Journal of Hydraulic Engineering, 2000, 126(1):4-15.
[17] 陈显维, 许全喜, 陈泽方. 三峡水库蓄水以来进出库水沙特性分析[J]. 人民长江, 2006, 37(8):1-3,6. [CHEN X W, XU Q X, CHEN Z F. Flow-sediment features of Three Gorges Reservoir since impoundment[J]. Yangtze River, 2006, 37(8):1-3, 6.]
[18] 卢金友, 黄悦. 三峡水库淤积计算预测与原型实测结果比较分析[J]. 长江科学院院报, 2013, 30(12):1-6,27. [LU J Y, HUANG Y. Comparison of sedimentation in Three Gorges Reservoir between calculated prediction and prototype measurement[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(12):1-6, 27.]
[19] 谢德体, 范小华, 魏朝富. 三峡水库消落区对库区水土环境的影响研究[J]. 西南大学学报(自然科学版), 2007, 29(1):39-47. [XIE D T, FAN X H, WEI C F. Effects of the riparian zone of the Three-Gorges Reservoir on the water-soil environment of the reservoir area[J]. Journal of Southwest University (Natural Science), 2007, 29(1):39-47.]
[20] 唐敏,杨春华,雷波. 基于GIS的三峡水库不同坡度消落带分布特征[J]. 三峡环境与生态, 2013, 35(3):8-10,20. [TANG M, YANG C H, LEI B. Spatial distribution investigation on the water-level-fluctuating zone slopes in Three Gorges Reservoir Areas based on GIS[J]. Environment and Ecology in the Three Gorges, 2013, 35(3):8-10, 20.]
[21] 张虹. 三峡重庆库区消落区基本特征与生态功能分析[J]. 长江流域资源与环境, 2008, 17(3):374-378. [ZHANG H. Analysis of the characteristics and ecosystem service of the water-level-fluctuating zone in the Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin, 2008, 17(3):374-378.]
[22] 李文杰, 杨胜发, 付旭辉, 等. 三峡水库运行初期的泥沙淤积特点[J]. 科学进展, 2015, 26(5):676-685. [LI W J, YANG S F, FU X H, et al. Sedimentation characteristics in the Three Gorges Reservoir during the initial operation stage[J]. Advances in Water Science, 2015, 26(5):676-685.]
[23] 白厚义. 试验方法及统计分析[M]. 北京:中国林业出版社,2005.
[24] 阎丹丹, 鲍玉海, 贺秀斌, 等. 三峡水库蓄水后长江干支流及消落带泥沙颗粒特征分析[J]. 水土保持学报, 2014, 28(4):289-292,329. [YAN D D, BAO Y H, HE X B, et al. Particle size characteristics of sediment in draw down area of upper Yangtze River and its major tributaries of Three Gorges Reservoir[J]. Journal of Soil and Water Conservation, 2014, 28(4):289-292, 329.]
[25] 郭进, 文安邦, 严冬春, 等. 三峡库区紫色土坡地土壤颗粒流失特征[J]. 水土保持学报, 2012,26(3):18-21. [GUO J, WEN A B, YAN D C, et al. Particle characteristics of eroded purple soil from slope land in the Three Gorges Reservoir Region[J]. Journal of Soil and Water Conservation, 2012, 26(3):18-21.]
[26] 魏丽, 卢金友, 刘长波. 三峡水库蓄水后长江上游水沙变化分析[J]. 中国农村水利水电, 2010(6):1-4, 8. [WEI L, LU J Y, LIU C B. An analysis of changing characteristics of runoff and sediment transport in upper Changjiang River after the impounding of Three Gorges Reservoir[J]. China Rural Water and Hydropower, 2010(6):1-4, 8.]
[1] 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟. 三峡库区消落带农用坡地磷素径流流失特征[J]. 长江流域资源与环境, 2018, 27(11): 2609-2618.
[2] 刘金珍, 樊皓, 阮娅. 乌东德水库坝前段消落带生态类型划分及生态修复模式初探[J]. 长江流域资源与环境, 2016, 25(11): 1767-1773.
[3] 崔天宇, 庞奖励, 黄春长, 查小春, 周亚利, 张文桐. 汉江上游风成谷地黄土的重矿物组成特征及意义[J]. 长江流域资源与环境, 2016, 25(06): 943-951.
[4] 刘秧, 余斌, 易伟, 朱云波, 刘强. 汶川地震后四川省安县黄洞子沟泥石流特征[J]. 长江流域资源与环境, 2016, 25(06): 996-1001.
[5] 朱强, 杨世伦, 孟翊, 杨海飞, 吴创收, 史本伟. 近期长江口南港河槽沉积地貌变异及其可能原因[J]. 长江流域资源与环境, 2016, 25(04): 560-566.
[6] 王晓荣, 程瑞梅, 肖文发, 潘磊, 曾立雄. 三峡库区消落带水淹初期主要优势草本植物生态位变化特征[J]. 长江流域资源与环境, 2016, 25(03): 404-411.
[7] 徐建霞, 彭刚志, 王建柱. 三峡库区香溪河消落带植被多样性及分布格局研究[J]. 长江流域资源与环境, 2015, 24(08): 1345-1350.
[8] 曾小凡 翟建青 苏布达 姜 彤 朱 进. 长江流域年平均气温的时空变化特征[J]. 长江流域资源与环境, 2009, 18(5): 427-.
[9] 胡 刚 王里奥 袁 辉 包 亮 欧阳鸥. 三峡库区消落带下部区域土壤氮磷释放规律模拟实验研究[J]. 长江流域资源与环境, 2008, 17(5): 780-780.
[10] 陈西庆,吕溪溪,严以新,童朝锋,窦希萍, 李键庸,田 磊. 长江河口上边界床沙粒径的长期变化及其原因[J]. 长江流域资源与环境, 2008, 17(4): 598-598.
[11] 王里奥,黄 川,詹艳慧,袁 辉. 三峡库区消落带淹水—落干过程土壤磷吸附—解吸及释放研究[J]. 长江流域资源与环境, 2006, 15(5): 593-597.
[12] 毛战坡,单保庆,彭文启,王洪军. 氮素在河流生态系统中的滞留研究进展[J]. 长江流域资源与环境, 2006, 15(4): 480-484.
[13] 袁 辉,王里奥,詹艳慧,黄 川,胡 刚. 三峡库区消落带健康评价指标体系[J]. 长江流域资源与环境, 2006, 15(2): 249-253.
[14] 程 江,何 青,王元叶,刘 红,夏小明. 长江河口细颗粒泥沙絮凝体粒径的谱分析[J]. 长江流域资源与环境, 2005, 14(4): 460-464.
[15] 许 川, 舒为群, 曹 佳, 汪 洋. 三峡库区消落带富营养化及其危害预测和防治[J]. 长江流域资源与环境, 2005, 14(4): 440-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[2] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[3] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[4] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[5] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[6] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[7] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[8] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[9] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[10] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .