长江流域资源与环境 >> 2016, Vol. 25 >> Issue (12): 1870-1878.doi: 10.11870/cjlyzyyhj201612010
董林垚1,2, 许文盛1,2, 胡波1,2, 石劲松1,2, 朱秀迪1,2
DONG Lin-yao1,2, XU Wen-sheng1,2, HU Bo1,2, SHI Jin-song1,2, ZHU Xiu-di1,2
摘要: 采用Morlet小波分解重构和频谱分析等方法,对宜昌、枝城、沙市、监利和城陵矶1997~2014年水位和流量及三峡水库2003~2014年入库、出库流量和库水位数据进行了统计分析,探究了各水文站在三峡建坝前后水情的变化特征及原因。结果表明:各观测站的水位和流量沿程递减,水位的年内波动处同一水平,研究河段内上游河段流量年内和年际变化比下游河段剧烈;各水文站水位和流量变化的显著周期为6.05、11.78、21.2、30.29和53个月,各水文站水位1 a周期变化幅度均在2 m以上,其他周期上的变化幅度为0.08~0.82 m;三峡水库蓄水活动对下游水文站水位和流量等水情的影响有限,主要反映在对水情趋势项的影响上,三峡大坝蓄水后,各水文站水位和流量受到一定程度影响,呈波动性递减变化。
中图分类号:
[1] ZHU J T, YOUNG M H, OSTERBERG J. Impacts of riparian zone plant water use on temporal scaling of groundwater systems[J]. Hydrological Processes, 2012, 26(9):1352-1360. [2] 陈子燊, 高时友, 陈玲舫. 珠江口磨刀门水道盐度变化对水文气象要素的频率响应特征[J]. 海洋通报, 2015, 34(1):14-20.[CHEN Z S, GAO S Y, CHEN L F. Frequency response characteristics of salinity change to hydro-meteorological elements in Modaomen waterway of Pearl River Estuary[J]. Marine Science Bulletin, 2015, 34(1):14-20.] [3] 付丛生, 陈建耀, 曾松青, 等. 滨海地区潮汐对地下水位变化影响的统计学分析[J]. 水利学报, 2008, 39(12):1365-1376.[FU C S, CHEN J Y, ZENG S Q, et al. Statistical analysis on impact of tide on water table fluctuation in coastal aquifer[J]. Journal of Hydraulic Engineering, 2008, 39(12):1365-1376.] [4] DONG L Y, SHIMADA J, KAGABU M, et al. Teleconnection and climatic oscillation in aquifer water level in Kumamoto plain, Japan[J]. Hydrological Processes, 2015, 29(7):1687-1703. [5] 孙卫国, 程炳岩. 交叉小波变换在区域气候分析中的应用[J]. 应用气象学报, 2008, 17(4):479-487.[SUN W G, CHENG B Y. Application of cross wavelet transformation to analysis on regional climate variations[J]. Journal of Applied Meteorological Science, 2008, 17(4):479-487.] [6] 董林垚, 陈建耀, 付丛生, 等. 西江流域径流与气象要素多时间尺度关联性研究[J]. 地理科学, 2013, 33(2):209-215.[DONG L Y, CHEN J Y, FU C S, et al. Recognition on the relationship between runoff and regional meteorological factors of the Xijiang river in multi-time scales[J]. Scientia Geographica Sinica, 2013, 33(2):209-215.] [7] ZHANG Q, XU C Y, JIANG T, et al. Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China[J]. Journal of Hydrology, 2007, 333(2/4):265-274. [8] FU C S, JAMES A L, WACHOWIAK M P. Analyzing the combined influence of solar activity and El Niño on streamflow across southern Canada[J]. Water Resource Research, 2012, 48(5), doi:10.1029/2011WR011507. [9] 王文圣, 赵太想, 丁晶. 基于连续小波变换的水文序列变化特征研究[J]. 四川大学学报(工程科学版), 2006, 36(4):6-9.[WANG W S, ZHAO T X, DING J. Study on change characteristics of hydrological time series with continuous wavelet transform[J]. Journal of Sichuan University (Engineering Science Edition), 2006, 36(4):6-9.] [10] 王文圣, 丁晶, 向红莲. 小波分析在水文学中的应用研究及展望[J]. 水科学进展, 2002, 13(4):515-520.[WANG W S, DING J, XIANG H L. Application and prospect of wavelet analysis in hydrology[J]. Advances in Water Science, 2002, 13(4):515-520.] [11] 郑昱, 张闻胜. 基于小波变换的水文序列的近似周期检测法[J]. 水文, 1999(6):22-25.[ZHENG Y, ZHANG W S. Application of wavelet transform in detection of hydrological sequence period[J]. Journal of China Hydrology, 1999(6):22-25.] [12] 李贤彬, 丁晶, 李后强. 水文时间序列的子波分析法[J]. 水科学进展, 1999, 10(2):144-149.[LI X B, DING J, LI H Q. Wavelet analysis of hydrological time series[J]. Advances in Water Science, 1999, 10(2):144-149.] [13] 李贤彬, 丁晶, 李后强. 水文序列Hurst系数的子波估计[J]. 水利学报, 1999, 30(8):21-25.[LI X B, DING J, LI H Q. The wavelet estimation of Hurst coefficient in hydrological time series[J]. Journal of Hydraulic Engineering, 1999, 30(8):21-25.] [14] ADAMOWSKI J F. River flow forecasting using wavelet and cross-wavelet transform models[J]. Hydrological Processes, 2008, 22(25):4877-4891. [15] 中国长江三峡集团公司. 长江三峡工程运行实录(2003-2012年)[R]. 北京:中国长江三峡集团公司, 2013. [16] 许足怀, 陈长英, 张幸农, 等. 三峡水库蓄水后湘江长沙段低水位变化规律研究[J]. 水利水运工程学报, 2014(5):81-86.[XU Z H, CHEN C Y, ZHANG X N, et al. Analysis of variation in water level of Changsha reach in Xiangjiang River after impoundment of the Three Gorges reservoir[J]. Hydro-Science and Engineering, 2014(5):81-86.] [17] 余世鹏, 杨劲松, 刘广明, 等. 基于HHT的三峡水库蓄水后坝下游水情多尺度时频特征[J]. 长江流域资源与环境, 2014, 23(10):1441-1448.[YU S P, YANG J S, LIU G M, et al. Multi-scale time-frequency characteristics analysis of river dynamics downstream the three gorges dam after its impoundment based on HHT[J]. Resources and Environment in the Yangtze Basin, 2014, 23(10):1441-1448.] [18] 李景保, 代勇, 欧朝敏, 等. 长江三峡水库蓄水运用对洞庭湖水沙特性的影响[J]. 水土保持学报, 2011, 25(3):215-219.[LI J B, DAI Y, OU C M, et al. Effects of store water application of the three-gorges reservoir on Yangtze River on water and sediment characteristics in the Dongting Lake[J]. Journal of Soil and Water Conservation, 2011, 25(3):215-219.] [19] 郭鸿博. 三峡大坝上游及坝下溶解氧变化规律研究[J]. 中国水运, 2008, 8(7):146-147.[GUO H B. Analysis of the variety and impact factors of dissolved oxygen downstream of Three Gorges Dam after the impoundment[J]. China Water Transport, 2008, 8(7):146-147.] [20] 卢金友, 张细兵, 姚仕明. 人类活动影响下长江中下游江湖治理问题探讨[J]. 人民长江, 2013, 44(10):18-22.[LU J Y, ZHANG X B, YAO S M. Problems of river and lake regulation in middle and lower Yangtze River under influence of human activity[J]. Yangtze River, 2013, 44(10):18-22.] [21] 汤成友, 王瑞, 缈韧. 离散小波变换在水文序列分解中的应用[J]. 中国农村水利水电, 2007(2):106-108.[TANG C Y, WANG R, MIAO R. Application of discrete wavelet transform in hydrological series decomposition[J]. China Rural Water and Hydropower, 2007(2):106-108.] [22] 艾学山, 董前进, 王先甲, 等. 小波分维估计法在三峡水库汛期洪水分期中的应用[J]. 系统工程理论与实践, 2009, 29(1):145-151.[AI X S, DONG Q J, WANG X J, et al. Application of wavelet fractal dimension estimation method to flood season staged of Three Gorges Reservoir[J]. Systems Engineering-Theory & Practice, 2009, 29(1):145-151.] [23] DONG L Y, SHIMADA J, KAGABU M, et al. Barometric and tidal-induced aquifer water level fluctuation near the Ariake Sea[J]. Environmental Monitoring and Assessment, 2015, 187(1):4187. [24] FULLER W A. Introduction to statistical time series[M]. New York:John Wiley and Sons, 1976. [25] BENDAT J S, PIERSOL A G. Random data:analysis and measurement procedures[M]. New York:John Wiley and Sons, 1991. [26] 过寒超, 秦琳琳, 牛凤霞, 等. 宜昌市近59年来的气候变化趋势分析[J]. 三峡大学学报(自然科学版), 2011, 33(5):26-30.[GUO H C, QIN L L, NIU F X, et al. Analysis of climate change tendency in Yichang city in recent 59 years[J]. Journal of China Three Gorges University (Natural Sciences), 2011, 33(5):26-30.] [27] 姜彤, 苏布达, 王艳君, 等. 四十年来长江流域气温、降水与径流变化趋势[J]. 气候变化进展, 2005, 1(2):65-68.[JIANG T, SU B D, WANG Y J, et al. Trends of temperature, precipitation and runoff in the Yangtze river basin from 1961 to 2000[J]. Advances in Climate Change Research, 2005, 1(2):65-68.] |
[1] | 汪聪聪, 王益澄, 马仁锋, 王静敏. 经济集聚对雾霾污染影响的空间计量研究——以长三角洲地区为例[J]. 长江流域资源与环境, 2019, 28(01): 1-11. |
[2] | 刘云强, 权 泉, 朱佳玲, 王 芳. 绿色技术创新、产业集聚与生态效率——以长江经济带城市群为例[J]. 长江流域资源与环境, 2018, 27(11): 2395-2406. |
[3] | 王丰龙, 曾刚, 叶琴, 陈弘挺. 基于创新合作联系的城市网络格局分析——以长江经济带为例[J]. 长江流域资源与环境, 2017, 26(06): 797-805. |
[4] | 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901. |
[5] | 姜磊, 周海峰, 柏玲. 长江中游城市群经济-城市-社会-环境耦合度空间差异分析[J]. 长江流域资源与环境, 2017, 26(05): 649-656. |
[6] | 周毅, 吴华武, 贺斌, 李静, 段伟利, 王建锋, 童世贤. 长江水δ18O和δD时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(05): 678-686. |
[7] | 姚振兴, 陈庆强, 杨钦川. 近60年来崇明岛东部淤涨速率初探[J]. 长江流域资源与环境, 2017, 26(05): 698-705. |
[8] | 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729. |
[9] | 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737. |
[10] | 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788. |
[11] | 梅琳, 黄柏石, 敖荣军, 张涛. 长江中游城市群城市职能结构演变及其动力因子研究[J]. 长江流域资源与环境, 2017, 26(04): 481-489. |
[12] | 武晓静, 杜德斌, 肖刚, 管明明. 长江经济带城市创新能力差异的时空格局演变[J]. 长江流域资源与环境, 2017, 26(04): 490-499. |
[13] | 周志高, 林爱文, 王伦澈. 长江中游城市群太阳辐射长期变化特征及其与气象要素的关系研究[J]. 长江流域资源与环境, 2017, 26(04): 563-571. |
[14] | 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584. |
[15] | 成定平, 淦苏美. 长江经济带高技术产业投入产出效率分析[J]. 长江流域资源与环境, 2017, 26(03): 325-332. |
|