长江流域资源与环境 >> 2017, Vol. 26 >> Issue (05): 730-737.doi: 10.11870/cjlyzyyhj201705010

• 生态环境 • 上一篇    下一篇

水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例

李金前1,2, 王吉1, 刘亚军1,2, 邹锋1,2, 马燕天1,2, 吴兰1,2   

  1. 1. 南昌大学生命科学学院, 江西 南昌 330031;
    2. 鄱阳湖环境与资源利用教育部重点实验室, 江西 南昌 330031
  • 收稿日期:2016-08-22 修回日期:2016-11-24 出版日期:2017-05-20
  • 通讯作者: 吴兰 E-mail:wl690902@hotmail.com
  • 作者简介:李金前(1989~),男,硕士研究生,主要从事环境微生物研究.E-mail:ncusk724@hotmail.com
  • 基金资助:
    国家自然科学基金项目(31360127,31260110)

EFFECT OF WATER LEVEL ELEVATION ON SOIL MICROBIAL METABOLIC FUNCTION OF WETLANDS——A CASE STUDY OF BANG LAKE

LI Jin-qian1,2, WANG Ji1, LIU Ya-jun1,2, ZOU Feng1,2, MA Yan-tian1,2, WU Lan1,2   

  1. 1. School of Life Science, Nanchang University, Nanchang 330031, China;
    2. Key Laboratory of Molecular Biology and Genetic Engineering in Jiangxi Province, Nanchang 330031, China
  • Received:2016-08-22 Revised:2016-11-24 Online:2017-05-20
  • Supported by:
    National Natural Science Fundation of China (31360127, 31260110)

摘要: 在淡水湖泊生态系统中,水位高程的变化会对整个生态系统产生重要的影响。本研究以鄱阳湖最具代表性的碟形湖——蚌湖为实验地点,研究了水位高程对于湖泊湿地土壤微生物代谢功能的影响。在实验中沿水位高程及植被带演替布设6个样地,利用Biolog-Eco技术探究不同水位高程样地土壤微生物群落代谢功能的多样性及分布规律。结果表明:随着样地水位高程的降低,土壤含水量逐渐升高,地表植被的覆盖率逐渐减少,土壤有机养分出现先减小后增大的趋势;而土壤微生物对碳源代谢活性随着高程的降低依次减弱,且优先利用的碳源种类和碳源利用率也有显著不同。通过dbRDA排序分析表明:土壤微生物群落功能多样性沿高程呈现区域性分布特征,相邻的两样地土壤微生物碳源代谢功能更为相近。影响湿地土壤微生物碳源代谢功能的主要因子为土壤含水量、土壤有机质含量、pH、NH4-N和地表植被类型。本研究结果可为合理管理和保护鄱阳湖湿地生态系统提供科学的指导。

关键词: 鄱阳湖, 水位高程, 微生物群落, Biolog-ECO, 土壤性质

Abstract: In freshwater lake ecosystems, change of water level will markedly affect the whole ecosystem. The Bang Lake, which is one of the most representative sub-lakes of Poyang Lake, was selected as study field in this study. Along with the gradient of water level elevation and vegetation succession, 6 sample plots were set up, and the diversity and distribution of microbial metabolic function from different plots were studied by using the Biolog-Eco method. Our results indicated that with the decrease of water level elevation, soil moisture was gradually increased, while vegetation coverage rate was gradually reduced. Soil organic matter content decreased firstly but increased afterwards. The soil microbial metabolic activity of carbon source was reduced as the water level elevated, and the preference and utilization rates of carbon source types were significantly different. Further results from distance-based redundancy analysis (dbRDA) showed that the carbon metabolic pattern of soil microbial communities from adjacent plots were more similar. There were several factors affecting the soil microbial metabolism of carbon source, including soil moisture, soil organic matter, pH, NH4-N and vegetation types. These findings would provide scientific guidance for reasonable management and protection of Poyang Lake wetland ecosystems.

Key words: Poyang Lake, water level elevation, microbial community, Biolog-ECO, soil properties

中图分类号: 

  • S154
[1] 贺晓英,贺缠生.北美五大湖保护管理对鄱阳湖发展之启示[J].生态学报,2008,28(12):6235-6242.[HE X Y,HE C S.Protection and development of the north America's Great Lakes Basin:implications to management of the Poyang Lake Basin[J].Acta Ecologica Sinica,2008,28(12):6235-6242.]
[2] "Studies on Poyang Lake" Editorial Board.Studies on Poyang Lake[M].Shanghai:Shanghai Science and Technology Press,1988.
[3] 葛刚,徐燕花,赵磊,等.鄱阳湖典型湿地土壤有机质及氮素空间分布特征[J].长江流域资源与环境,2010,19(6):619-622.[GE G,XU Y H,ZHAO L,et al.Spatial distribution characteristics of soil organic matter and nitrogen in the Poyang Lake wetland[J].Resources and Environment in the Yangtze Basin,2010,19(6):619-622.]
[4] 刘发根,李梅,郭玉银.鄱阳湖水质时空变化及受水位影响的定量分析[J].水文,2014,34(4):37-43.[LIU F G,LI M,GUO Y Y.Spatial-temporal variation of water quality and water level effect on water quality in Poyang Lake[J].Hydrology,2014,34(4):37-43.]
[5] 胡振鹏,葛刚,刘成林.越冬候鸟对鄱阳湖水文过程的响应[J].自然资源学报,2014,29(10):1770-1779.[HU Z P,GE G,LIU C L.Response of wintering migratory birds to hydrological processes in Poyang Lake[J].Journal of Natural Resources,2014,29(10):1770-1779.]
[6] 张萌,倪乐意,徐军,等.鄱阳湖草滩湿地植物群落响应水位变化的周年动态特征分析[J].环境科学研究,2013,26(10):1057-1063.[ZHANG M,NI L Y,XU J,et al.Annual dynamics of the wetland plants community in Poyang Lake in response to water-level variations[J].Research of Environmental Sciences,2013,26(10):1057-1063.]
[7] 谢冬明,郑鹏,邓红兵,等.鄱阳湖湿地水位变化的景观响应[J].生态学报,2011,31(5):1269-1276.[XIE D M,ZHENG P,DENG H B,et al.Landscape responses to changes in water levels at Poyang Lake wetlands[J].Acta Ecologica Sinica,2011,31(5):1269-1276.]
[8] ZHANG X,ZHAO X,ZHANG M.Functional diversity changes of microbial communities along a soil aquifer for reclaimed water recharge[J].FEMS Microbiology Ecology,2012,80(1):9-18.
[9] 吴则焰,林文雄,陈志芳,等.中亚热带森林土壤微生物群落多样性随海拔梯度的变化[J].植物生态学报,2013,37(5):397-406.[WU Z Y,LIN W X,CHEN Z F,et al.Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest[J].Chinese Journal of Plant Ecology,2013,37(5):397-406.]
[10] GARLAND J L.Analysis and interpretation of community-level physiological profiles in microbial ecology[J].FEMS Microbiology Ecology,1997,24(4):289-300.
[11] 吴桂平,叶春,刘元波.鄱阳湖自然保护区湿地植被生物量空间分布规律[J].生态学报,2015,35(2):361-369.[WU G P,YE C,LIU Y B.Spatial distribution of wetland vegetation biomass in the Poyang Lake national nature reserve,China[J].Acta Ecologica Sinica,2015,35(2):361-369.]
[12] 张杰,余潮,王自海,等.不同植被群落表层土壤中细菌群落多样性[J].环境科学研究,2013,26(8):866-872.[ZHANG J,YU C,WANG Z H,et al.Diversity of bacterial communities in surface soils under different vegetation communities[J].Research of Environmental Sciences,2013,26(8):866-872.]
[13] 陈伏生,胡小飞,葛刚.城市地被植物麦冬叶片氮磷化学计量比和养分再吸收效率[J].草业学报,2007,16(4):47-54.[CHEN F S,HU X F,GE G.Leaf N:P stoichiometry and nutrient resorption efficiency of Ophiopogon japonicus in Nanchang City[J].Acta Prataculturae Sinica,2007,16(4):47-54.]
[14] 濮培民.蔡述明,朱海虹,等.三峡工程与长江中游湖泊洼地环境[M].北京:科学出版社,1994.
[15] BUTLER S M,MELILLO J M,JOHNSON J E,et al.Soil warming alters nitrogen cycling in a New England forest:implications for ecosystem function and structure[J].Oecologia,2012,168(3):819-828.
[16] 张杰,胡维,刘以珍,等.鄱阳湖湿地不同土地利用方式下土壤微生物群落功能多样性[J].生态学报,2015,35(4):965-971.[ZHANG J,HU W,LIU Y Z,et al.Response of soil microbial functional diversity to different land-use types in wetland of Poyang Lake,China[J].Acta Ecologica Sinica,2015,35(4):965-971.]
[17] ROGERS B F,TATE Ⅲ R L.Temporal analysis of the soil microbial community along a toposequence in Pineland soils[J].Soil Biology and Biochemistry,2001,33(10):1389-1401.
[18] WEI Y,YU L F,ZHANG J C,et al.Relationship between vegetation restoration and soil microbial characteristics in degraded karst regions:a case study[J].Pedosphere,2011,21(1):132-138.
[19] SCHUTTER M,DICK R.Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates[J].Soil Biology&Biochemistry,2001,33(11):1481-1491.
[20] DING X,PENG X J,JIN B S,et al.Spatial distribution of bacterial communities driven by multiple environmental factors in a beach wetland of the largest freshwater lake in China[J].Frontiers in Microbiology,2015,6:129.
[21] 夏品华,寇永珍,喻理飞.喀斯特高原退化湿地草海土壤微生物群落碳源代谢活性研究[J].环境科学学报,2015,35(8):2549-2555.[XIA P H,KOU Y Z,YU L F.Carbon metabolic soil microbial community in Caohai Karst Plateau degraded wetland:a case study in southwest China[J].Acta Scientiae Circumstantiae,2015,35(8):2549-2555.]
[22] FOULQUIER A,VOLAT B,NEYRA M,et al.Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments[J].FEMS Microbiology Ecology,2013,85(2):211-226.
[23] 盛宣才,邵学新,吴明,等.水位对杭州湾芦苇湿地土壤有机碳、氮、磷含量的影响[J].生态与农村环境学报,2015,31(5):718-723.[SHENG X C,SHAO X X,WU M,et al.Effects of water level on organic carbon,total nitrogen and total phosphoruse in soil in reed wetlands of Hangzhou Bay[J].Journal of Ecology and Rural Environment,2015,31(5):718-723.]
[24] 张全军,于秀波,钱建鑫,等.鄱阳湖南矶湿地优势植物群落及土壤有机质和营养元素分布特征[J].生态学报,2012,32(12):3656-3669.[ZHANG Q J,YU X B,QIAN J X,et al.Distribution characteristics of plant communities and soil organic matter and main nutrients in the Poyang Lake Nanji Wetland[J].Acta Ecologica Sinica,2012,32(12):3656-3669.]
[25] 刘银银,孙庆业,李峰,等.洞庭湖典型湿地植被群落土壤微生物特征[J].生态学杂志,2013,32(5):1233-1237.[LIU Y Y,SUN Q Y,LI F,et al.Soil microbial characteristics of Dongting Lake wetlands with different typical vegetation communities[J].Chinese Journal of Ecology,2013,32(5):1233-1237.]
[26] 杨继松,刘景双.小叶章湿地土壤微生物生物量碳和可溶性有机碳的分布特征[J].生态学杂志,2009,28(8):1544-1549.[YANG J S,LIU J S.Distribution characteristics of microbial biomass carbon and dissolved organic carbon in Deyeuxia angustifolia marsh soils[J].Chinese Journal of Ecology,2009,28(8):1544-1549.]
[27] ÖZEN A,BUCAK T,TAVŞANOĞLU Ü N,et al.Water level and fish-mediated cascading effects on the microbial community in eutrophic warm shallow lakes:a mesocosm experiment[J].Hydrobiologia,2014,740(1):25-35.
[28] 杨桂生,宋长春,王丽,等.水位梯度对小叶章湿地土壤微生物活性的影响[J].环境科学,2010,31(2):444-449.[YANG G S,SONG C C,WANG L,et al.Influence of water level gradient on marsh soil microbial activity of Calamagrostis angustifolia[J].Environmental Science,2010,31(2):444-449.]
[1] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[2] 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729.
[3] 侯立春, 林振山, 琚胜利, 赖正清, 吴连霞, 张志荣. 环鄱阳湖旅游圈旅游经济联系与区域发展策略[J]. 长江流域资源与环境, 2017, 26(04): 508-518.
[4] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[5] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[6] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[7] 戴雪, 何征, 万荣荣, 杨桂山. 近35 a长江中游大型通江湖泊季节性水情变化规律研究[J]. 长江流域资源与环境, 2017, 26(01): 118-125.
[8] 张范平, 方少文, 周祖昊, 温天福, 张梅红. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境, 2017, 26(01): 126-133.
[9] 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16.
[10] 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(Z1): 95-102.
[11] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[12] 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758.
[13] 戴雪, 杨桂山, 万荣荣, 李冰, 王晓龙. 鄱阳湖洲滩植被健康状态评价及其典型不健康年水文条件分析[J]. 长江流域资源与环境, 2016, 25(09): 1395-1402.
[14] 李云良, 许秀丽, 赵贵章, 姚静, 张奇. 鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J]. 长江流域资源与环境, 2016, 25(08): 1200-1208.
[15] 夏少霞, 于秀波, 刘宇, 贾亦飞, 张广帅. 鄱阳湖湿地现状问题与未来趋势[J]. 长江流域资源与环境, 2016, 25(07): 1103-1111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[3] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[4] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[5] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[9] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[10] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .