长江流域资源与环境 >> 2017, Vol. 26 >> Issue (06): 915-924.doi: 10.11870/cjlyzyyhj201706014

• 生态环境 • 上一篇    下一篇

鄱阳湖水体垂向分层状况调查研究

李云良1,2, 姚静2, 张小琳2,3, 张奇2,4   

  1. 1. 河海大学水文水资源与水利工程科学国家重点实验室, 江苏 南京 210098;
    2. 中国科学院南京地理与湖泊研究所, 流域地理学重点实验室, 江苏 南京 210008;
    3. 中国科学院大学, 北京 100049;
    4. 江西师范大学, 鄱阳湖湿地与流域研究教育部重点实验室, 江西 南昌 330022
  • 收稿日期:2016-10-09 修回日期:2016-11-23 出版日期:2017-06-20
  • 作者简介:李云良(1983~),男,博士,助理研究员,主要从事湖泊流域系统水文水动力过程联合模拟研究.E-mail:yunliangli@niglas.ac.cn
  • 基金资助:
    河海大学水文水资源与水利工程科学国家重点实验室开放研究基金(2014491611);江西省重大生态安全问题监控协同创新中心项目(JXS-EW-00);国家自然科学基金项目(41401031,41371062,41301023)

STUDY ON THE VERTICAL STRATIFICATION IN POYANG LAKE

LI Yun-liang1,2, YAO Jing2, ZHANG Xiao-lin2,3, ZHANG Qi2,4   

  1. 1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China;
    2. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    3. University of the Chinese Academy of Sciences, Beijing 100049, China;
    4. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
  • Received:2016-10-09 Revised:2016-11-23 Online:2017-06-20
  • Supported by:
    Open Foundation of State Key Laboratory of HydrologyWater Resources and Hydraulic Engineering (2014491611);CollaborativeInnovation Center for Major Ecological Security Issues of Jiangxi Province and Monitoring Implementation (JXS-EW-00);National Natural Science Foundation of China (41401031, 41371062 and 41301023)

摘要: 湖泊水体混合或分层对环境和生态具有显著指示意义,能够提高对未来湖泊水环境状况的评价与管理。针对洪泛鄱阳湖水位季节性变化显著等特点,基于剖面温度和稳定氢氧同位素的调查分析来探明多因素影响下鄱阳湖水体垂向分层或混合状况。结果发现:鄱阳湖枯水期和洪水期水体垂向温差大多处于0~1.0℃,大部分水域温差小于0.5℃,但偶见洪水期部分水域会达到1.5℃的较大温差。总体表明,在季节变化尺度上,鄱阳湖具有较为稳定的等温层,没有明显温度分层特征。同位素分析结果得出,枯水期和洪水期的氢氧稳定同位素值在深度剖面上呈均一分布,表明鄱阳湖水体混合状况较好或完全混合。虽然湖区气象条件和水文条件均是影响鄱阳湖水体分层或混合的重要因素,但鄱阳湖入流和出流等水文条件是影响鄱阳湖水体垂向混合的主要因素。鄱阳湖水体混合同时对湖泊水环境因子的垂向分布特征可能产生重要的影响或控制作用。首次基于大量野外监测有针对性地开展鄱阳湖水体分层研究,结果有助于对湖泊水流结构的深入认识,可为湖区水体污染物的输移模拟与作用机制阐释等方面提供科学参考。

关键词: 洪泛鄱阳湖, 水体分层或混合, 水温, 氢氧同位素, 水环境因子, 影响因素

Abstract: Although mixing in lakes has significant environmental and ecological implications, knowledge of mixing dynamics for shallow floodplain lakes has received little attention. In this study we used a combination of hydrological and thermal investigations to provide evidence for the mixing in a large, shallow floodplain of Poyang Lake (China). Depth profiles of water temperature and stable hydrogen and oxygen isotope compositions were measured throughout the lake. Results showed that although the water temperature differences of up to 1.5°C were observed occasionally during the high lake water level period, Poyang Lake appeared to have isothermal mixed-layers from the upper epilimnion to the bottom hypolimnion attributed to the presence of mostly small temperature differences (0.5–1°C). The stable isotope composition revealed that the water columns of the lake were almost homogeneous during low and high lake water level periods. Poyang Lake appears to be well mixed or full mixing on a seasonal basis, depending on hydrological forcing within the lake, rather than meteorological conditions. Additionally, the vertical mixing of Poyang Lake appeared to have a close relationship with the aquatic environment due to mostly small differences in the vertical distributions of suspended sediments, TN and TP. The current study is the first to explore the stratification of Poyang Lake, which will help to improve our knowledge of water flow patterns and pollutant transport within the lake.

Key words: floodplain Poyang Lake, lake stratification or mixing, water temperature, hydrogen and oxygen isotopes, aquatic environment, influencing factor

中图分类号: 

  • P339
[1] READ J S, WINSLOW L A, HANSEN G J A, et al. Simulating 2368 temperate lakes reveals weak coherence in stratification phenology[J]. Ecological Modelling, 2014, 291:142-150.
[2] BOUFFARD D, BOEGMAN L, ACKERMAN J D, et al. Near-inertial wave driven dissolved oxygen transfer through the thermocline of a large lake[J]. Journal of Great Lakes Research, 2014, 40(2):300-307.
[3] BERTONE E, STEWART R A, ZHANG H, et al. Analysis of the mixing processes in the subtropical Advancetown Lake, Australia[J]. Journal of Hydrology, 2015, 522:67-79.
[4] READ J S, HAMILTON D P, JONES I D, et al. Derivation of lake mixing and stratification indices from high-resolution lake buoy data[J]. Environmental Modelling & Software, 2011, 26(11):1325-1336.
[5] MARTIN J L, MCCUTCHEON S C. Hydrodynamics and transport for water quality modeling[M]. Boca Raton:CRC Press, 1998:355-420.
[6] ELÇI Ş. Effects of thermal stratification and mixing on reservoir water quality[J]. Limnology, 2008, 9(2):135-142.
[7] CHOWDHURY M R, WELLS M G, COSSU R. Observations and environmental implications of variability in the vertical turbulent mixing in Lake Simcoe[J]. Journal of Great Lakes Research, 2015, 41(4):995-1009.
[8] HALDER J, DECROUY L, VENNEMANN T W. Mixing of Rhône River water in Lake Geneva (Switzerland-France) inferred from stable hydrogen and oxygen isotope profiles[J]. Journal of Hydrology, 2013, 477:152-164.
[9] TUAN N V, HAMAGAMI K, MORI K, et al. Mixing by wind-induced flow and thermal convection in a small, shallow and stratified lake[J]. Paddy and Water Environment, 2009, 7(2):83-93.
[10] HERB W R, STEFAN H G. Dynamics of vertical mixing in a shallow lake with submersed macrophytes[J]. Water Resources Research, 2005, 41(2):W02023.
[11] TOWNSEND S A. Hydraulic phases, persistent stratification, and phytoplankton in a tropical floodplain lake (Mary River, Northern Australia)[J]. Hydrobiologia, 2006, 556(1):163-179.
[12] ENGLE D, MELACK J M. Methane emissions from an Amazon floodplain lake:Enhanced release during episodic mixing and during falling water[J]. Biogeochemistry, 2000, 51(1):71-90.
[13] FORD P W, BOON P I, LEE K. Methane and oxygen dynamics in a shallow floodplain lake:the significance of periodic stratification[J]. Hydrobiologia, 2002, 485(1):97-110.
[14] 赵林林, 朱广伟, 陈元芳, 等. 太湖水体水温垂向分层特征及其影响因素[J]. 水科学进展, 2011, 22(6):844-850.[ZHAO L L, ZHU G W, CHEN Y F, et al. Thermal stratification and its influence factors in a large-sized and shallow Lake Taihu[J]. Advances in Water Science, 2011, 22(6):844-850.]
[15] 董春颖, 虞左明, 吴志旭, 等. 千岛湖湖泊区水体季节性分层特征研究[J]. 环境科学, 2013, 34(7):2574-2581.[DONG C Y, YU Z M, WU Z Y, et al. Study on seasonal characteristics of thermal stratification in Lacustrine zone of Lake Qiandao[J]. Environmental Science, 2013, 34(7):2574-2581.]
[16] 赵巧华, 孙绩华. 夏秋两季洱海、太湖表层混合层的深度变化特征及其机理分析[J]. 物理学报, 2013, 62(3):039203.[ZHAO Q H, SUN J H. The variation features of the surface mixed layer depth in Erhai Lake and Taihu Lake in spring and autumn and their mechanism analyses[J]. Acta Physica Sinica, 2013, 62(3):039203.]
[17] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京:科学出版社, 1998.
[18] LI X, ZHANG L, YANG G, et al. Impacts of human activities and climate change on the water environment of Lake Poyang Basin, China[J]. Geoenvironmental Disasters, 2015, 2(1):22.
[19] SHANKMAN D, KEIM B D, SONG J. Flood frequency in China's Poyang Lake region:trends and teleconnections[J]. International Journal of Climatology, 2006, 26(9):1255-1266.
[20] HU Q, FENG S, GUO H, et al. Interactions of the Yangtze River flow and hydrologic processes of the Poyang Lake, China[J]. Journal of Hydrology, 2007, 347(1/2):90-100.
[21] LAI X J, JIANG J H, LIANG Q H, et al. Large-scale hydrodynamic modeling of the middle Yangtze River Basin with complex river-lake interactions[J]. Journal of Hydrology, 2013, 492:228-243.
[22] LI Y L, ZHANG Q, YAO J, et al. Hydrodynamic and hydrological modeling of the Poyang Lake catchment system in China[J]. Journal of Hydrologic Engineering, 2014, 19(3):607-616.
[23] WANG P, LAI G Y, LI L. Predicting the hydrological impacts of the Poyang Lake project using an EFDC model[J]. Journal of Hydrologic Engineering, 2015, 20(12), doi:10.1061/(ASCE)HE.1943-5584.0001240.[DOI:10.1061/(ASCE)HE.1943-5584.0001240]
[24] FENG L, HU C M, CHEN X L, et al. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010[J]. Remote Sensing of Environment, 2012, 121:80-92.
[25] 姚 静, 张 奇, 李云良, 等. 定常风对鄱阳湖水动力的影响[J]. 湖泊科学, 2016, 28(1):225-236.[YAO J, ZHANG Q, LI Y L, et al. The influence of uniform winds on hydrodynamics of Lake Poyang[J]. Journal of Lake Sciences, 2016, 28(1):225-236.]
[26] LI Y L, ZHANG Q, WERNER A D, et al. Investigating a complex lake-catchment-river system using artificial neural networks:Poyang Lake (China)[J]. Hydrology Research, 2015, 12(22):912-928.
[27] SÁNCHEZ-ESPAÑA J, ERCILLA M D, CERDÁN F P, et al. Hydrological investigation of a multi-stratified pit lake using radioactive and stable isotopes combined with hydrometric monitoring[J]. Journal of Hydrology, 2014, 511:494-508.
[28] SHINADA A, OMORI H, TADA M, et al. Effect of wind on behavior of hypoxic water in Lake Notoro[J]. Scientific Reports of Hokkaido Fisheries Experimental Station, 2009, 75:1-5.
[29] LI Y L, ZHANG Q, WERNER A D, et al. The influence of river-to-lake backflow on the hydrodynamics of a large floodplain lake system (Poyang Lake, China)[J]. Hydrological Processes, 2017, 31(1):117-132, doi:10.1002/hyp.10979.[DOI:10.1002/hyp.10979]
[30] LI Y L, ZHANG Q, YAO J. Investigation of residence and travel times in a large floodplain lake with complex lake-river interactions:Poyang Lake (China)[J]. Water, 2015, 7(5):1991-2012.
[31] LIU X, QIAN K M, CHEN Y W. Effects of water level fluctuations on phytoplankton in a Changjiang River floodplain lake (Poyang Lake):Implications for dam operations[J]. Journal of Great Lakes Research, 2015, 41(3):770-779.
[1] 龙良红, 徐慧, 纪道斌, 严萌, 刘德富. 向家坝水库水温时空特征及其成因分析[J]. 长江流域资源与环境, 2017, 26(05): 738-746.
[2] 罗文斌, 孟贝, 钟诚. 农地整理项目治理绩效及影响因素研究——以浙江省48个国投项目为例[J]. 长江流域资源与环境, 2017, 26(02): 180-189.
[3] 杨超杰, 贺斌, 段伟利, 李冰, 陈雯, 杨桂山. 太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例[J]. 长江流域资源与环境, 2017, 26(02): 273-281.
[4] 侯祎亮, 安艳玲, 吴起鑫, 吴旌滔, 黄娟, 段少琼, 刘霄. 贵州省三岔河流域水化学特征及其控制因素[J]. 长江流域资源与环境, 2016, 25(07): 1121-1128.
[5] 胡雪萍, 李丹青. 城镇化进程中生态足迹的动态变化及影响因素分析——以安徽省为例[J]. 长江流域资源与环境, 2016, 25(02): 300-306.
[6] 任平, 洪步庭, 周介铭. 基于空间自相关模型的农村居民点时空演变格局与特征研究[J]. 长江流域资源与环境, 2015, 24(12): 1993-2002.
[7] 宋春林, 孙向阳, 王根绪. 贡嘎山亚高山降水稳定同位素特征及水汽来源研究[J]. 长江流域资源与环境, 2015, 24(11): 1860-1869.
[8] 杜雪莲, 王世杰, 罗绪强. 黔中喀斯特石漠化区不同小生境常见木本植物水分来源特征[J]. 长江流域资源与环境, 2015, 24(07): 1168-1176.
[9] 张维, 李启权, 王昌全, 袁大刚, 罗由林, 张新, 贾荔. 川中丘陵县域土壤pH空间变异及影响因素分析——以四川仁寿县为例[J]. 长江流域资源与环境, 2015, 24(07): 1192-1199.
[10] 简敏菲, 简美锋, 李玲玉, 汪斯琛, 余厚平, 余冠军. 鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子[J]. 长江流域资源与环境, 2015, 24(05): 765-772.
[11] 吴必文, 温华洋, 叶朗明, 徐光清. 安徽地区近45年蒸发皿蒸发量变化特征及影响因素初探[J]. 长江流域资源与环境, 2009, 18(7): 620-.
[12] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337-.
[13] 何小勤, 戴雪荣, 顾成军. 崇明东滩不同部位的季节性沉积研究[J]. 长江流域资源与环境, 2009, 18(2): 157-.
[14] 李 彬,武 恒. 安徽省耕地资源数量变化及其对粮食安全的影响[J]. 长江流域资源与环境, 2009, 18(12): 1115-.
[15] 赵国玲, 杨钢桥. 农户宅基地流转意愿的影响因素分析——基于湖北二县市的农户调查研究[J]. 长江流域资源与环境, 2009, 18(12): 1121-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[2] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[3] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[4] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[5] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .
[6] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[7] 张代钧,许丹宇,任宏洋,曹海彬,郑 敏,刘惠强. 长江三峡水库水污染控制若干问题[J]. 长江流域资源与环境, 2005, 14(5): 605 -610 .
[8] 黄 峰 魏 浪 李 磊 朱 伟. 乌江干流中上游水电梯级开发水温累积效应[J]. 长江流域资源与环境, 2009, 18(4): 337 .
[9] 胡鸿兴, 张岩岩, 何伟, 田蓉, 钟鑫, 韩世松, 李思思, 王俊杰陈文方, 杨阳, 陈侈, 邓晗, 文英, 崔雅婷, 李茜,  王璇, 彭菁菁, 高鑫, 唐义. 神农架大九湖泥炭藓沼泽湿地对镉(Ⅱ)、铜(Ⅱ)、铅(Ⅱ)、锌(Ⅱ)的净化模拟[J]. 长江流域资源与环境, 2009, 18(11): 1050 .
[10] 王肇磊, 贺新枝. 晚清时期湖北自然灾害的治理及其经验教训[J]. 长江流域资源与环境, 2009, 18(11): 1080 .