长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 781-788.doi: 10.11870/cjlyzyyhj201505010

• 自然资源 • 上一篇    下一篇

武汉市耕地非农化的空间自相关分析

张孝宇1,2, 张安录1   

  1. 1. 华中农业大学公共管理学院, 湖北 武汉 430070;
    2. 武汉市土地利用和城市空间规划研究中心, 湖北 武汉 430010
  • 收稿日期:2014-04-30 修回日期:2014-07-21 出版日期:2015-05-20
  • 作者简介:张孝宇(1987~),女,博士研究生,主要研究方向为土地资源可持续利用.E-mail:zhangxy2005@webmail.hzau.edu.cn
  • 基金资助:
    国家自然科学基金项目(71373095);教育部人文社科重大攻关项目(14J2D009);国家自然科学基金应急项目(71341040);国家自然科学基金项目(71103072);湖北省国土资源科技发展计划项目(GTZYKJ2013A01);湖北省高校优秀中青年科技创新团队(T201012);教育部人文社科基金(13YJC630016)

SMALL-SCALE SPATIAL PATTERNS OF FARMLAND CONVERSION BASED ON AUTOCORRELATION ANALYSIS IN WUHAN CITY

ZHANG Xiao-yu1,2, ZHANG An-lu1   

  1. 1.College of Public Administration, Huazhong Agricultural University, Wuhan 430070, China; 2.Wuhan Land Use and Urban Spatial Planning Research Center, Wuhan 430010, China
  • Received:2014-04-30 Revised:2014-07-21 Online:2015-05-20
  • Contact: 张安录 E-mail:zhanganlu@mail.hzau.edu.cn

摘要: 经济发展和城市扩张使包括耕地在内的大量开放空间被不断侵蚀, 随着人们对耕地非市场价值和生态功能认识的不断加深, 如何合理高效可持续地利用耕地被广泛关注。采用空间自相关分析方法从乡镇尺度定量研究了武汉市耕地非农化的空间关系, 以探讨快速发展时期平原城市耕地非农化空间关系的变化及其原因。研究表明:(1)全局Moran's I显示武汉市耕地非农化在1990~2011年的4个时期均呈现出显著的全局空间自相关, 其聚集强度以2005年为分界点, 前3个时期不断加强后有所下降;(2)通过EB修正的武汉市耕地非农化的LISA图显示武汉市耕地非农化的聚集区域由开始处于区域外围的LL型聚集为主导逐步转变为处于城乡交错区域的LH+HH型聚集为主导;(3)通过绘制不同时期不同聚集类型的重心移动路径可以发现LH+HH型聚集均出现先向东南再向东北移动的趋势, 这种耕地非农化趋势与区域的产业布局有密切关系。通过空间自相关分析掌握武汉市耕地非农化的空间特征是开展耕地保护和实现耕地合理利用的基石, 根据研究结果可以确定重点和优先管制区域以提升土地利用管制效果, 协调好城市建设和耕地资源保护间的关系。

关键词: 空间自相关, 耕地非农化, 热点分析, 武汉市

Abstract: A lot of open space including farmland is being invaded and occupied because of economic development and city expansion. Sustainable use of farmland is increasingly concerned for the ecological functions, and non-market value of farmland has been recognized and accepted widely. The key issue of rational use of farmland is characterizing the spatial distribution pattern of farmland conversion and identifying the locations of hotspots and cold spots of farmland conversion. In this paper, farmland conversion data were extracted by using spatial statistics and spatial analyst functions in ArcGIS based on the land use data between 1990 and 2011. To explore the characteristics of spatial distribution and moving route of spatial agglomeration districts of farmland conversion, spatial autocorrelation analysis is applied to different periods of farmland conversion in the Wuhan City. Based on the analysis, the main conclusions are as follows: Firstly, the global Moran's I index indicated that the farmland conversion in the Wuhan City showed significant global spatial autocorrelation during the all four periods from 1990 to 2011, and the aggregation intensity displayed an increasing-decreasing tendency. The aggregation intensity trend reflected that the farmland conversion in the Wuhan City presented spread and out of order in space in the period from 2005 to 2011. Secondly, Empirical Bayes methods could increase the stationarity of variables while the local Moran's I statistic is computed for rates or proportions. So we used the local indicators of spatial association cluster map with the Empirical Bayes methods to show the location of cluster areas of farmland conversion in the Wuhan City and the spatial distribution of different types of aggregation (e.g., low-low, low-high and high-high). The areas presenting high-high type clustering are exactly the hotspots of farmland conversion. The conversion between the types of aggregations indicates that low-high type clustering is a potential high-high type clustering, and low-high type clustering will have a greater probability to convert into high-high type clustering. So low-high type clustering present the priority regulation areas in the perspective of the protection of farmland resources. The number of accumulation areas continued rising in the Wuhan City, and the leading role of farmland conversion has changed from low level of farmland conversion areas to high level ones. Both these description means farmland protection is becoming more difficult than before. Thirdly, the location of cluster areas of farmland conversion in the next period can be pre-estimated through drawing the moving route of different types of aggregation. The centers of gravity of low-high type clustering and high-high type clustering are expected to appear to the southeast of centroid in Wuhan, and that of low-low type clustering is expected to appear to the western. Recognizing the spatial characteristics of farmland conversion by spatial autocorrelation analysis is the foundation to protect farmland effectively and use efficiently. The research results and analysis methods can provide a theoretical reference and basis for the rational allocation and regulation of land resources.

Key words: spatial autocorrelation, farmland conversion, hot spots, Wuhan city

中图分类号: 

  • F301.24
[1] IRWIN E G, BOCKSTAEL N E.The evolution of urban sprawl:Evidence of spatial heterogeneity and increasing land fragmentation[J].Proceedings of the National Academy of Sciences, 2007, 104(52):20672-20677.
[2] JENERETTE G D, POTERE D.Global analysis and simulation of land-use change associated with urbanization[J].Landscape ecology, 2010, 25(5):657-670.
[3] FAHRIG L.Effects of habitat fragmentation on biodiversity[J].Annual review of ecology, evolution, and systematics, 2003:487-515.
[4] ARMSWORTH P R, DAILY G C, KAREIVA P, et al.Land market feedbacks can undermine biodiversity conservation[J].Proceedings of the National Academy of Sciences, 2006, 103(14):5403-5408.
[5] LEWIS D J, PLANTINGA A J, WU J J.Targeting incentives to reduce habitat fragmentation[J].American Journal of Agricultural Economics, 2009, 91(4):1080-1096.
[6] LICHTENBERG E, DING C.Assessing farmland protection policy in China[J].Land Use Policy, 2008, 25(1):59-68.
[7] SULLIVAN E, EBER R.The long and winding road:Farmland protection in oregon 1961-2009[J].San Joaquin Agriculture Law Review, 2008, 18(1):1-69.
[8] 吴泽斌, 刘卫东, 罗文斌, 等.我国耕地保护的绩效评价及其省际差异分析[J].自然资源学报, 2009(10):1785-1793.
[9] AZADI H, HO P, HASFIATI L.Agricultural land conversion drivers:A comparison between less developed, developing and developed countries[J].Land Degradation & Development, 2011, 22(6):596-604.
[10] 刘涛, 曹广忠.城市规模的空间聚散与中心城市影响力——基于中国637个城市空间自相关的实证[J]地理研究, 2012(7):1317-1327.
[11] 杜国明, 张树文, 张有全, 等.城市人口分布的空间自相关分析——以沈阳市为例[J]地理研究, 2007(2):383-390.
[12] BETTS M G, DIAMOND A W, FORBES G J, et al.The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence[J].Ecological Modelling, 2006, 191(2):197-224.
[13] 祁彩虹, 金则新, 李钧敏, 等.浙江天台山甜槠种群遗传结构的空间自相关分析[J]生态学报, 2011(18):5130-5137.
[14] 赵小风, 黄贤金, 张兴榆, 等.区域COD、SO2及TSP排放的空间自相关分析:以江苏省为例[J]环境科学, 2009, 30(6):1580-1587.
[15] 杨杨, 吴次芳.泛长江三角洲区域经济空间差异分析——基于经验贝叶斯修正的空间自相关指数[J]长江流域资源与环境, 2011(5):513-518.
[16] OVERMARS K P, DE KONING G H J, VELDKAMP A.Spatial autocorrelation in multi-scale land use models[J].Ecological Modelling, 2003, 164(2):257-270.
[17] 高凯, 周志翔, 杨玉萍, 等.长江流域土地利用结构及其空间自相关分析[J]长江流域资源与环境, 2010(S1):13-20.
[18] 刘庆, 陈利根, 张凤荣, 等.中国1986年至2006年耕地非农化数量与经济发展关系的计量分析[J]资源科学, 2009(5):787-793.
[19] 钱忠好.耕地保护的行动逻辑及其经济分析[J]扬州大学学报(人文社会科学版), 2002(1):32-37.
[20] 陈江龙, 曲福田, 陈雯.农地非农化效率的空间差异及其对土地利用政策调整的启示[J]管理世界, 2004(8):37-42, 155.
[21] SAWADA M.Global spatial autocorrelation indices-Moran's I, Geary's C and the General Cross-Product Statistic[DB/OL].[2009-11-23].http://www.lpc.uottawa.ca/publications/moransi/moran.htm
[22] MORAN P A.Notes on continuous stochastic phenomena[J].Biometrika, 1950, 37:17-23.
[23] ANSELIN L.Local indicators of spatial association—LISA[J]Geographical Analysis, 1995, 27(2):93-115.
[1] 翟天林, 金贵, 邓祥征, 李兆华, 王润. 基于多源遥感影像融合的武汉市土地利用分类方法研究[J]. 长江流域资源与环境, 2016, 25(10): 1594-1602.
[2] 赵安, 张文馨, 柳庆, 马玉宽, 段后浪, 商伊迪. 湖沼型血吸虫病疫区钉螺空间自相关的样点尺寸效应[J]. 长江流域资源与环境, 2016, 25(08): 1209-1217.
[3] 刘俊, 李云云, 林楚, 王家庆, 乔治, 葛全胜. 长江旅游带旅游资源空间格局研究[J]. 长江流域资源与环境, 2016, 25(07): 1009-1015.
[4] 凌赛广, 焦伟利, 龙腾飞, 刘慧婵, 易予晴, 武盟盟, 王威, 何国金. 2000~2014年武汉市城市扩展时空特征分析[J]. 长江流域资源与环境, 2016, 25(07): 1034-1042.
[5] 柯新利, 李红艳, 刘荣霞. 武汉市耕地景观游憩功能与可达性的空间匹配格局[J]. 长江流域资源与环境, 2016, 25(05): 751-760.
[6] 吴连霞, 赵媛, 管卫华. 江苏省人口城乡结构差异的多尺度研究[J]. 长江流域资源与环境, 2016, 25(01): 25-38.
[7] 卢燕, 余斌, 韩勇. 基于客流结构的高铁经济辐射效应研究——以武汉市为例[J]. 长江流域资源与环境, 2016, 25(01): 39-47.
[8] 马才学, 赵利利, 柯新利. 湖北省耕地非农化压力的时空演变格局[J]. 长江流域资源与环境, 2016, 25(01): 71-78.
[9] 任平, 洪步庭, 周介铭. 基于空间自相关模型的农村居民点时空演变格局与特征研究[J]. 长江流域资源与环境, 2015, 24(12): 1993-2002.
[10] 管卫华, 彭鑫, 张惠, 魏也华. 不同空间尺度的江苏省区域经济差异研究[J]. 长江流域资源与环境, 2015, 24(12): 2003-2011.
[11] 陈宇, 单玉红, 陈银蓉. 碳氧平衡约束下武汉市土地利用结构优化情景模型研究[J]. 长江流域资源与环境, 2015, 24(12): 2030-2037.
[12] 陈肖飞, 姚士谋, 张落成. 1990年以来长江三角洲耕地资源变化及驱动因子研究[J]. 长江流域资源与环境, 2015, 24(09): 1521-1527.
[13] 吴松, 安裕伦, 马良瑞. 城市化背景下喀斯特流域生态服务价值时空分异特征——以贵阳市南明河流域为例[J]. 长江流域资源与环境, 2015, 24(09): 1591-1598.
[14] 刘乙淼, 陈艳梅, 胡引翠. 长江流域土壤保持能力时空特征[J]. 长江流域资源与环境, 2015, 24(06): 971-977.
[15] 张孝宇, 赖宗裕, 张安录. 基于地块尺度的耕地非农化驱动力空间异质性研究——以武汉市为例[J]. 长江流域资源与环境, 2015, 24(06): 994-1002.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721 .
[2] 刘传江,朱劲松. 三峡库区土地资源承载力现状与可持续发展对策[J]. 长江流域资源与环境, 2008, 17(4): 522 .
[3] 孟爱云, 濮励杰. 区域耕地数量变化与工业化、城市化进程相互关系探讨——以江苏省为例[J]. 长江流域资源与环境, 2008, 17(2): 237 .
[4] 肖思思, 黄贤金, 彭补拙, 濮励杰, 陈 逸. 经济发达县域耕地土壤重金属污染评价及其影响因素分析[J]. 长江流域资源与环境, 2007, 16(5): 674 .
[5] 陈 逸,黄贤金,彭补拙,濮励杰,张 健 . 经济发达区不同土地利用方式下土壤中镉的含量特征——以江苏省昆山市为例[J]. 长江流域资源与环境, 2007, 16(3): 391 .
[6] 田晓四, 陈 杰,朱 诚,朱同林. 南京市经济增长与工业“三废”污染水平计量模型研究[J]. 长江流域资源与环境, 2007, 16(4): 410 .
[7] 贾泽露,. GIS与SDM集成构建土地定级专家信息系统的研究[J]. 长江流域资源与环境, 2007, 16(3): 323 .
[8] 胥 晓|郑伯川|陈友军. 嘉陵江流域植被景观的空间格局特征[J]. 长江流域资源与环境, 2007, 16(3): 373 .
[9] 魏显虎|杜耘,蔡述明,薛怀平,刘韬,. 清江流域1995~2000年土壤侵蚀时空变化[J]. 长江流域资源与环境, 2006, 15(Sup1): 120 -124 .
[10] 谢 洪,钟敦伦,李 泳,韦方强. 长江上游泥石流灾害的特征[J]. 长江流域资源与环境, 2004, 13(1): 94 -99 .