长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 773-780.doi: 10.11870/cjlyzyyhj201505009

• 自然资源 • 上一篇    下一篇

基于实测数据与遥感影像的鄱阳湖水体光学分类

况润元, 罗卫, 张萌   

  1. 江西理工大学建筑与测绘工程学院, 江西 赣州 341000
  • 收稿日期:2014-04-01 修回日期:2014-06-10 出版日期:2015-05-20
  • 作者简介:况润元(1976~),男,副教授,博士,主要从事环境遥感和地理信息系统研究.E-mail:rykuang@163.com
  • 基金资助:
    国家自然科学基金项目(41101322);江西省自然科学基金项目(20114BAB213022)

OPTICAL CLASSIFICATION OF POYANG LAKE WATERS BASED ON IN SITU MEASUREMENTS AND REMOTE SENSING IMAGES

KUANG Run-yuan, LUO Wei, ZHANG Meng   

  1. School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Received:2014-04-01 Revised:2014-06-10 Online:2015-05-20

摘要: 鄱阳湖是我国最大的淡水湖泊, 受季风气候影响其水体空间动态变化大, 且广阔的水域内部差异也较大, 因此湖泊水体光学分类对反演湖泊水质参数及监测湖泊水质有着重要意义。以鄱阳湖为研究区, 根据实测的反射光谱数据形态特征将鄱阳湖的水体分为4类:特别浑浊、中等浑浊、轻度浑浊和清水区, 并分别对每一类结果进行分析。考虑到实测光谱数据局限于湖区某些离散点的情况, 不足以观测整个鄱阳湖区域内所有不同水体类型的空间分布和动态变化, 从而将该方法利用于遥感影像以便观测整个湖区水体类型。在Landsat OLI遥感影像上任意选取采样点, 根据其波谱形态建立基于斜率的分类算法, 并应用决策树模型把鄱阳湖水体分为5类:特别浑浊、中等浑浊、轻度浑浊、清水区和特别清澈, 影像的分类结果图与实地考察的情况相一致。把模型应用于其他时期的遥感影像进行鄱阳湖水体分类, 对比影像的分类结果图表明:2002、2005和2009年鄱阳湖区分别出现3种、4种和4种不同的水体类型, 且水体浑浊范围呈现出动态变化。研究表明水体光学类型分类可以更好的监测湖泊水质的时空变异性。

关键词: 鄱阳湖, 反射率, 水体, 分类

Abstract: Poyang Lake is the largest freshwater lake in China. Affected by the monsoon climate, the seasonal and inter-annual changes of its water area are obvious, and the remarkable differences exist in the internal water area. Optical classification of lake water is of great significance for retrieval of lake water quality parameters and monitoring of lake water quality. Taking Poyang Lake as the study area, in this paper, the Poyang Lake waters were divided into four categories based on morphological characteristics of the measured spectral reflectance data, i.e., Special turbidi, Medium turbidi, Mild turbid, Generally Clear. We analyzeddd the results of each water body type. Considering the measured spectral data are limited to some discrete points of the lake area, which are not enough for the observation of the spatial distribution and dynamic change of all different water body types in Poyang Lake area, we use remote sensing image to observe the type of whole lake water body. Then, we selected some sampling points on the Landsat 8 OLI remote sensing images , and established a classification algorithm based on the slope according to their spectral shape. The Poyang Lake water bodies were finally divided into five types using a decision tree model: Extremely Turbid, Medium Turbid, Mild Turbid, Generally Clear, and Particularly Clear. Results from image classification were found to be consistent with the field observations. When the model is applied to other periods of remote sensing images for classification of Poyang Lake water body, comparison of image classification results showed that Poyang Lake presented three, four and four different types of water bodies in 2002, 2005 and 2009, respectively, and the water turbidity range showed dynamic changes. Turbid water areas were mainly distributed in the channel of Poyang Lake's water flow into the Yangtze River and near the Songmen Mountain at the end of September or at the beginning of October (in 2002, 2005, 20013), and turbid water areas were mainly distributed near the river estuary in Poyang Lake at the early May in 2009, the channel of Poyang Lake's water flow into the Yangtze River and near the Songmen Mountain failed to present a special turbidity. It was found that optical classification of lake water can help monitor the spatial and temporal variability of Poyang Lake water optical quality.

Key words: Poyang lake, reflectivity, water, classification

中图分类号: 

  • X87
[1] MOREL A, PRIEUR L.Analysis of variations in ocean color[J].Limnology and Oceanography, 1977, 22(4):709-722.
[2] DOERFFER R, SORENSEN K, AIKEN J.MERIS potential for coastal zones applications[J].International Journal of Remote Sensing, 1999, 20(9):1809-1818.
[3] PULLIAINEN J, KALLIO K, ELOHEIMO S, et al.A semioperative approach to lake water quality retrieval from remote sensing data[J].The Science of the Total Environment, 2001, 268(3):79-93.
[4] IOCCG.Remote sensing ocean colour in coastal and other optically-complex waters[R]//SATHYENDRANATH S.Reports of the International Ocean-Colour Coordinating Croup, No.3, IOCCG, Dartmouth, Canada, 2000.
[5] BERTRAND L, HUBERT L.Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea[J].Remote Sensing of Environment, 2007, 110(1):45-58.
[6] MOORE T S, CAMPBELL J W, FENG H.A fuzzy logic classification scheme for selecting and blending satellite ocean color algorithms[J].IEEE Transaction on Geoscience and Remote Sensing, 2001, 39:1764-1776.
[7] FENG H, CAMPBELL J W, DOWELL M D, et al.Modeling spectral reflectance of optically complex waters using bio-optical measurements from Tokyo Bay[J].Remote Sensing of Environment, 2005, 99:232-243.
[8] LUBAC B, LOISEL H.Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea[J].Remote Sensing of Environment, 2007, 110(1):45-58.
[9] TILSTONE G H, ANGEL-BENAVIDES I M, PRADHAN Y, et al.An assessment of chlorophyll-a algorithms available for SeaWiFS in coastal and open areas of the Bay of Bengal and Arabian Sea[J].Remote Sensing of Environment, 2011, 115(9):2277-2291.
[10] HOMMERSOM A, WERNAND M R, PETERS S, et al.Spectra of a shallow sea-unmixing for class identification and monitoring of coastal waters[J].Ocean Dynamics, 2011, 61(4), 463-480.
[11] LE C F, LI Y M, ZHA Y, et al.Remote estimation of chlorophyll a in optically complex waters based on optical classification[J].Remote Sensing of Environment, 2011, 115(2):725-737.
[12] MÉLIN F, VANTREPOTTE M, CLERICI D, et al.Multi-sensor satellite time series of optical properties and chlorophyll a concentration in the Adriatic Sea[J].Progress in Oceanography, 2011, 91(3):229-244.
[13] 邬国锋, 崔丽娟, 纪伟涛, 等.基于时间序列MODIS影像的鄱阳湖丰水期悬浮泥沙浓度反演及变化[J].湖泊科学, 2009, 21(2):288-297.
[14] 唐军武, 田国良, 汪小勇, 等.水体光谱测量与分析I:水面以上测量法[J].遥感学报, 2004, 8(1):37-44.
[15] SONG C., WOODCOCK C E, SETO K C, et al.Classification and change detection using landsat TM data:when and how to correct atmospheric effects[J].Remote Sensing of Environment, 2001, 75(2):230-244.
[16] SMITH R C.BAKER K S.Optical properties of the clearest natural waters(200-800 nm)[J].Applied Optics, 1981, 20(2):177-184.
[17] 刘志国, 周云轩, 沈芳, 等.河口水体泥沙浓度的水面光谱统计模式分析[J].水利学报, 2007, 38(7):799-805.
[1] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[2] 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729.
[3] 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737.
[4] 侯立春, 林振山, 琚胜利, 赖正清, 吴连霞, 张志荣. 环鄱阳湖旅游圈旅游经济联系与区域发展策略[J]. 长江流域资源与环境, 2017, 26(04): 508-518.
[5] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[6] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[7] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[8] 赵登忠, 肖潇, 汪朝辉, 谭德宝, 陈永柏. 水布垭水库水体碳时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 304-313.
[9] 戴雪, 何征, 万荣荣, 杨桂山. 近35 a长江中游大型通江湖泊季节性水情变化规律研究[J]. 长江流域资源与环境, 2017, 26(01): 118-125.
[10] 张范平, 方少文, 周祖昊, 温天福, 张梅红. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境, 2017, 26(01): 126-133.
[11] 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16.
[12] 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(Z1): 95-102.
[13] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[14] 陈星, 张平究, 包先明, 张璐璐, 张海霞, 韩燕青. 改良剂对湿地土壤团聚体及抗悬浮能力的影响试验[J]. 长江流域资源与环境, 2016, 25(12): 1903-1909.
[15] 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721 .
[3] 刘传江,朱劲松. 三峡库区土地资源承载力现状与可持续发展对策[J]. 长江流域资源与环境, 2008, 17(4): 522 .
[4] 肖思思, 黄贤金, 彭补拙, 濮励杰, 陈 逸. 经济发达县域耕地土壤重金属污染评价及其影响因素分析[J]. 长江流域资源与环境, 2007, 16(5): 674 .
[5] 陈 逸,黄贤金,彭补拙,濮励杰,张 健 . 经济发达区不同土地利用方式下土壤中镉的含量特征——以江苏省昆山市为例[J]. 长江流域资源与环境, 2007, 16(3): 391 .
[6] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[7] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[8] 魏显虎|杜耘,蔡述明,薛怀平,刘韬,. 清江流域1995~2000年土壤侵蚀时空变化[J]. 长江流域资源与环境, 2006, 15(Sup1): 120 -124 .
[9] 姚书春,薛 滨,夏威岚. 洪湖历史时期人类活动的湖泊沉积环境响应[J]. 长江流域资源与环境, 2005, 14(4): 475 -480 .
[10] 林建伟,王里奥, 赵建夫,张 军,袁 辉. 三峡库区生活垃圾的重金属污染程度评价[J]. 长江流域资源与环境, 2005, 14(1): 104 -108 .