长江流域资源与环境 >> 2015, Vol. 24 >> Issue (06): 937-942.doi: 10.11870/cjlyzyyhj201506006

• 自然资源 • 上一篇    下一篇

基于SWAT模型的昌江流域土地利用变化对水环境的影响研究

刘瑶1, 江辉1,2, 方玉杰2, 王静岚3, 闫喜凤3   

  1. 1. 南昌工程学院, 江西 南昌 330029;
    2. 南昌大学鄱阳湖环境与资源利用教育部重点实验室, 江西 南昌 330031;
    3. 江西科技师范大学, 江西 南昌 330047
  • 收稿日期:2014-05-06 修回日期:2014-08-02 出版日期:2015-06-20
  • 作者简介:刘 瑶(1980~ ),女,讲师,硕士,从事工程项目管理研究.E-mail:liuyaojj@163.com*
  • 基金资助:
    国家自然科学基金(41461080、51269020);南昌工程学院青年基金-自然科学项目(2014KJ006);南昌大学"鄱阳湖环境与资源利用教育部重点实验室"开放基金项目(13005873)

WATER ENVIRONMENT IMPACT UNDER DIFFERENT LAND USE IN CHANGJIANG RIVER BASIN BASED ON SWAT MODER

LIU Yao1, JIANG Hui1,2, FANG Yu-jie2, WANG Jing-lan3, YAN Xi-feng3   

  1. 1. Nanchang Institute of Technology, Nanchang 330029, China;
    2. Key Lab of Poyang Lake Environment and Resource Utilization Ministry of Education, Nanchang University, Nanchang 330031, China;
    3. Jiangxi Science and Technology Normal University, Nanchang 330047, China
  • Received:2014-05-06 Revised:2014-08-02 Online:2015-06-20
  • Contact: 江辉 E-mail:jnhuily@163.com

摘要: 土地利用快速变化对水环境带来较大影响,定量分析土地利用与水环境污染的关系是土地利用结构调整的重要依据。利用3S技术,通过SWAT模型对1983年与2012年昌江流域的水量和水质模拟,分析了土地利用时空变化,结合氨氮、总磷模拟数据,定量分析了土地利用变化下该流域的水环境污染负荷。研究结果表明:该区域林地、草地、水域、城镇及建设用地呈增加趋势,耕地则呈减小趋势。林地占比最大,为70%左右,其次为水田。水田为水环境非点源负荷贡献的第一大来源,且其占流域略多于20%的面积,贡献了该区域总磷总量的53.48%~57.01%和氨氮总量的51.86%~56.57%;农业耕作以25%的地类面积,贡献了60%~65%的非点源污染负荷;旱地的单位面积贡献污染负荷高于林地及城镇及建设用地,表明农业非点源污染是该区域水环境非点源污染的主要来源。

关键词: SWAT, 土地利用, 水环境, 非点源, 遥感

Abstract: With the intensification of the harsh climate and increase of human activities, land use is changing rapidly in the basin scale, and environmental effects caused by land use change is one of the key issues of global change processes. It brought a greater impact on the water environment, and quantitative analysis of the relationship between water pollution and land use is an important basis for land use restructuring. Based data analysis using GIS, with remote sensing image data as an important data source of the SWAT model, through the SWAT modelling water quantity of ChangJiang basin and simulating water quality in 1983 and 2012, the land use space-time change was analyzed, and the relation with the land use of tributary Changjiang basin in Poyang lake basin and the water pollution of the environment was explored. The most sensitive parameters in this SWAT model were crop management parameters, chemical fertilizer parameters and soil parameters. Nitrogen model output was positively related to application rates of fertilizer and soil nitrogen content. In calibration period and validation periods, ammonia nitrogen and total phosphorus was consistent with the measured and simulated values. In calibration period and validation period, ammonia nitrogen relative error evaluation index were 19.67 and 23.89, the correlation coefficient R2 of ammonia nitrogen were 0.817 5 and 0.763 2; while total phosphorus evaluation index relative error were 21.95 and 31.33 respectively, the correlation coefficient R2 of total phosphorus were 0.838 3 and 0.756 7. The precision of the model met the requirements of the month load simulation. The area of woodland, grassland, water, urban construction land showed an increasing trend, but farmland showed a decreasing trend. Woodland showed the largest proportion of 70%, followed by paddy fields. Paddy contribution to nonpoint source loads of water environment was the greatest, and the basin was slightly more than 20% of the area. The contribution of the total phosphorus to the total amount was 53.48%-57.01%, and 51.86%-51.86% for the total ammonia nitrogen. Dry land per unit area contribution was higher than the forest and urban construction land. It suggests that agricultural non-point source pollution is the main source of agricultural non-point source pollution of water environment. Farming with 25% of the land area, contributed 60%-65% of the nonpoint source pollution load. Therefore, reducing the application of chemical fertilizers and improving the utilization of chemical fertilizers are the most effective way to reduce non-point sources of water environment pollution; while the contribution of forest land for non-point source was the lowest, therefore, converting from farmland to forest will reduce water environmental non-point source pollution. The research results can help to water environment management decisions.

Key words: SWAT, land use, water environment, non-point sources, remote sensing

中图分类号: 

  • P237.9
[1] 王思远,张增祥,周全斌,等.近10年中国土地利用格局及其演变[J].地理学报,2002,57(5):523-530.
[2] 郭鸿鹏,朱静雅,杨印生.农业非点源污染防治技术的研究现状及进展[J].农业工程学报,2008,24(4):290-295.
[3] 韩 涛,彭文启,李怀恩,等.洱海水体富营养化的演变及其研究进展[J].中国水利水电科学研究院学报,2005,3(1):71-73.
[4] 石 峰,杜鹏飞,张大伟,等.滇池流域大棚种植区面源污染模拟[J].清华大学学报:自然科学版,2005,45(3):363-366.
[5] ABBASPOUR K C,YANG J,MAXIMOV I,et al.Modellinghydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT[J].Journal of Hydrology,2007,333:413-430.
[6] BEHERA S,PANDA R K.Evaluation of management alternativesfor an agricultural watershed in a sub-humid subtropical region using a physical process based model[J].Agriculture,Ecosystems and Environment,2006,113(1/2/3/4):62-72.
[7] SANTHI C,ARNOLD J G,WILLIAMS J R,et al.Validation of the SWAT model on a large river basin with point and nonpoint sources[J].Journal of the American Water Resources Association,2001,37(5):1169-1188.
[8] HAO F H,ZHANG X S,YANG Z F.A distributed non-point source pollution model:calibration and validation in the Yellow River Basin[J].Journal of Environmental Sciences,2004,16(4):646-650.
[9] 李 佳,张小咏,杨艳昭.基于SWAT模型的长江源土地利用/土地覆被情景变化对径流影响研究[J].水土保持研究,2012,19(3):119-128.
[10] 刘 博,徐宗学.基于SWAT模型的北京沙河水库流域非点源污染模拟[J].农业工程学报,2011,27(5):52-61.
[11] 罗 巧,王克林,王勤学.基于SWAT模型的湘江流域土地利用变化情景的径流模拟研究[J].中国生态农业学报,2011,19(6):1431-1436.
[12] 秦耀民,胥彦玲,李怀恩.基于SWAT模型的黑河流域不同土地利用情景的非点源污染研究[J].环境科学学报,2009,29(2):440-448.
[13] GASSMAN P,REYES M,GREEN C H,et al.The soil and water assessment tool:historical development,applications,and future research directions[J].Transactions of the ASABE,2007,50(4):1211-1250.
[1] 赵 毅, 徐绪堪, 李晓娟. 基于变权灰色云模型的江苏省水环境系统脆弱性评价[J]. 长江流域资源与环境, 2018, 27(11): 2463-2471.
[2] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481-2495.
[3] 高洁芝, 郑华伟, 刘友兆. 基于熵权TOPSIS模型的土地利用多功能性诊断[J]. 长江流域资源与环境, 2018, 27(11): 2496-2504.
[4] 冯 畅, 毛德华, 周 慧, 曹艳敏, 胡光伟. 流域绿水管理博弈建模及应用分析[J]. 长江流域资源与环境, 2018, 27(11): 2505-2517.
[5] 陆俊, 黄进良, 王立辉, 裴艳艳. 基于时空数据融合的江汉平原水稻种植信息提取[J]. 长江流域资源与环境, 2017, 26(06): 874-881.
[6] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[7] 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914.
[8] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[9] 付永虎, 刘黎明, 任国平, 刘朝旭, 郭赟, 叶津炜. 平原河网地区非点源污染风险差异化分区防控研究[J]. 长江流域资源与环境, 2017, 26(05): 713-722.
[10] 闵敏, 林晨, 熊俊峰, 沈春竹, 金志丰, 马荣华, 许金朵. 不同土地利用模式下洪泽湖流域非点源颗粒态磷负荷时空演变研究[J]. 长江流域资源与环境, 2017, 26(04): 606-614.
[11] 虎陈霞, 郭旭东, 连纲, 张忠明. 长三角快速城市化地区土地利用变化对生态系统服务价值的影响——以嘉兴市为例[J]. 长江流域资源与环境, 2017, 26(03): 333-340.
[12] 许玲燕, 杜建国, 刘高峰. 基于云模型的太湖流域农村水环境承载力动态变化特征分析——以太湖流域镇江区域为例[J]. 长江流域资源与环境, 2017, 26(03): 445-453.
[13] 李沁, 沈明, 高永年, 张志飞. 基于改进粒子群算法和元胞自动机的城市扩张模拟——以南京为例[J]. 长江流域资源与环境, 2017, 26(02): 190-197.
[14] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[15] 田柳, 陈江龙, 高金龙. 城市空间结构紧凑与土地利用效率耦合分析——以南京市为例[J]. 长江流域资源与环境, 2017, 26(01): 26-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李崇明,黄真理. 三峡水库入库污染负荷研究(Ⅱ)——蓄水后污染负荷预测[J]. 长江流域资源与环境, 2006, 15(1): 97 -106 .
[2] 张文广,胡远满, 刘 淼,杨兆平,常 禹,李秀珍,杨 孟,问青春, . 基于土地利用变化的生态服务价值损益估算——以岷江上游地区为例[J]. 长江流域资源与环境, 2007, 16(6): 821 .
[3] 况润元 周云轩 李行 田波. 崇明东滩鸟类生境适宜性空间模糊评价[J]. 长江流域资源与环境, 2009, 18(3): 229 -233 .
[4] 李中强, 王双玲, 杨梅, 徐. 基于生态敏感性分析的湖泊保护与利用——以湖北省斧头湖为例[J]. 长江流域资源与环境, 2010, 19(06): 714 .
[5] 陈姗姗, 束炯, 徐建中. 中国若干典型城市对流层NO2时空分布特征[J]. 长江流域资源与环境, 2010, 19(12): 1484 .
[6] 刘文娟, 舒舍玉, 王润, 肖黎姗, 孙艳伟. 基于西部开发战略的丽江市发展定位初探[J]. 长江流域资源与环境, 2011, 20(07): 807 .
[7] 赵雲泰 | 黄贤金 | 陈志刚 | 彭佳雯. 基于DEA的中国农地非农化效率及其变化[J]. 长江流域资源与环境, 2011, 20(10): 1228 .
[8] 徐德兰 |韩宝平 |高明侠 |宋新桓 |董 萧 |闫 姗. 大型水生植物对骆马湖氮磷元素及磷酸酶活性的影响[J]. 长江流域资源与环境, 2011, 20(11): 1368 .
[9] 赵登忠|林初学|谭德宝|陈永柏. 清江流域水布垭水库二氧化碳大气廓线空间分布及其水环境效应[J]. 长江流域资源与环境, 2011, 20(12): 1495 .
[10] 李荣昉,丁永生,程丽俊,李昌彦. 基于水量分配方案的抚河流域最小控制需水量研究[J]. 长江流域资源与环境, 2012, 21(01): 58 .