长江流域资源与环境 >> 2017, Vol. 26 >> Issue (03): 471-479.doi: 10.11870/cjlyzyyhj201703018

• 生态环境 • 上一篇    

岷江上游生态环境脆弱性评价

陈金月, 王石英   

  1. 四川师范大学 地理与资源科学学院, 四川 成都 610101
  • 收稿日期:2016-06-22 修回日期:2016-09-28 出版日期:2017-03-20
  • 通讯作者: 王石英,E-mail:345301068@qq.com E-mail:345301068@qq.com
  • 作者简介:陈金月(1993~),男,硕士研究生,主要研究方向为GIS空间分析与设计.E-mail:173381351@qq.com
  • 基金资助:
    国家科技支撑计划项目“南方红壤水土流失治理技术研究与示范”课题3“水土流失治理效果情景分析与评价”(2013BAC08B03-4)

ECO-ENVIRONMENTAL VULNERABILITY EVALUATION IN THE UPPER REACHES OF MINJIANG RIVER

CHEN Jin-yue, WANG Shi-ying   

  1. College of Geography and Resource Science, Sichuan Normal University, Chengdu 610101, China
  • Received:2016-06-22 Revised:2016-09-28 Online:2017-03-20
  • Supported by:
    The analysis and evaluation of Loss Control effect scenario (2013BAC08B03-4), the sub project 3 of China National Science and Technology Support Program "The technology research and demonstration of Southern Red Soil Loss Control"

摘要: 生态环境脆弱性评价是全球生态问题和可持续发展研究中的重要内容之一。岷江上游因地质构造复杂、人地矛盾突出、生态系统异常脆弱和灵敏而备受关注。本文以岷江上游生态环境脆弱性为研究对象,选取证据权重法(WOE)进行滑坡脆弱性评价,层次分析法(AHP)进行水力侵蚀、景观破坏与污染脆弱性评价;在此基础上,进行了研究区各生态主题脆弱性的空间叠加分析;探讨了岷江上游生态环境脆弱性及其在不同影响因子作用下的空间分异特征。结果表明:研究区的滑坡脆弱性、水力侵蚀脆弱性、景观破坏与污染脆弱性均以轻微度为主,分别占研究区面积的80.43%、71.89%、75.55%;各生态环境主题脆弱性综合分析表明,54.70%的区域至少面临一种生态问题,面临两种及以上环境问题的区域占15.43%,同时面临三种环境问题的占1.35%。研究结果探讨了岷江上游生态环境存在的主要问题和影响因子,对岷江流域乃至长江流域的生态安全和可持续发展具有积极意义,未来应持续关注生态环境脆弱区的生态环境问题。

关键词: 岷江上游, 生态脆弱性, 评价, WOE, AHP

Abstract: Eco-environmental vulnerability assesous contradiction between people and land. The paper used the method of weights of evidence (WOE) to assess the landslide vulnerability and used method of Analytic Hierarchy Process (AHP) to assess water and soil erosion, destruction of landscape and pollution vulnerability. The landslide vulnerability evaluation model contains four landslide evaluation factors including slope, aspect, soil properties and rainfall. The paper chose slope, rainfall, soil type and plant cover types as water and soil erosion vulnerability index. Due to the larger landscape of environmental damage by vandalism and greater population density can reflect the extent of the development of land and other natural landscapes, the paper selected population density, plant cover type, slope, rainfall as the main indicators of landscape destruction and pollution. According to the numerical results, three eco-environmental theme's vulnerability was classified into five levels:potential, slight, light, medium, and heavy level by means of the natural breaks law. On this basis, the paper conducted a comprehensive analysis of the study area on each ecological theme. Furthermore, the paper discussed the distribution of ecological fragility of upper reaches of Minjiang River and its spatial distribution under influences of different factors. The results showed that:the landslide vulnerability, water and soil erosion vulnerability, landscape destruction and pollution vulnerability in the study area are generally slight, with a level of 80.43%, 70.44%, and 73.52% respectively. Comprehensive analysis showed that 57.14% of the study area is facing at least one of the ecological problems. 16.6% of the area is facing two or more problems and 1.8% is facing three issues. The paper completed analyses of ecological problems and the underlying influencing factors. The results are expected to benifit ecological security and sustainable development of the Minjiang River Valley and the Yangtze River Basin.

Key words: the upper reaches of Minjiang River, eco-environmental vulnerability, evaluation, WOE, AHP

中图分类号: 

  • X171.1
[1] KATES R W, CLARK W C, CORELL T, et al. Environment and development:sustainability science[J]. Science, 2001, 292(5517):641-642.
[2] YING X, ZENG G M, CHEN G Q, et al. Combining AHP with GIS in synthetic evaluation of eco-environment quality-a case study of Hunan Province, China[J]. Ecological Modelling, 2007, 209(2/4):97-109.
[3] 李德旺, 李红清, 雷晓琴, 等. 基于GIS技术及层次分析法的长江上游生态敏感性研究[J]. 长江流域资源与环境, 2013, 22(5):633-639.[LI D W, LI H Q, LEI X Q, et al. Ecological sensitivity in the upper Changjiang River with GIS technology and hierarchy analysis method[J]. Resources and Environment in the Yangtze Basin, 2013, 22(5):633-639.]
[4] ENEA M, SALEMI G. Fuzzy approach to the environmental impact evaluation[J]. Ecological Modelling, 2001, 136(2/3):131-147.
[5] 徐庆勇, 黄玫, 李雷, 等. 晋北地区生态环境脆弱性的GIS综合评价[J]. 地球信息科学学报, 2013, 15(5):705-711.[XU Q Y, HUANG M, LI L, et al. Integrated assessment of eco-environmental vulnerability in north Shanxi Province[J]. Journal of Geo-Information Science, 2013, 15(5):705-711.]
[6] 吴晓, 吴宜进. 基于灰色关联模型的山地城市生态安全动态评价——以重庆市巫山县为例[J]. 长江流域资源与环境, 2014, 23(3):385-391.[WU X, WU Y J. Evaluation on the eco-safety of mountainous city based on gray correlation model——a case study of the Wushan county in the city of Chongqing[J]. Resources and Environment in the Yangtze Basin, 2014, 23(3):385-391.]
[7] 徐庆勇, 黄玫, 刘洪升, 等. 基于RS和GIS的珠江三角洲生态环境脆弱性综合评价[J]. 应用生态学报, 2011, 22(11):2987-2995.[XU Q Y, HUANG M, LIU H S, et al. Integrated assessment of eco-environmental vulnerability in Pearl River Delta based on RS and GIS[J]. Chinese Journal of Applied Ecology, 2011, 22(11):2987-2995.]
[8] 王岩, 方创琳. 大庆市城市脆弱性综合评价与动态演变研究[J]. 地理科学, 2014, 34(5):547-555.[WANG Y, FANG C L. Comprehensive evaluation and dynamic evolution analysis of Daqing'S Urban vulnerability[J]. Scientia Geographica Sinica, 2014, 34(5):547-555.]
[9] LI A N, WANG A S, LIANG S L, et al. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS-a case study in the upper reaches of Minjiang River, China[J]. Ecological Modelling, 2006, 192(1/2):175-187.
[10] 南希, 严冬, 李爱农, 等. 岷江上游流域山地灾害危险性分区[J]. 灾害学, 2015, 30(4):113-120.[NAN X, YAN D, LI A N, et al. Mountain hazards risk zoning in the upper reaches of Minjiang River[J]. Journal of Catastrophology, 2015, 30(4):113-120.]
[11] 秦纪洪, 赵利坤, 孙辉, 等. 岷江上游干旱河谷旱地土壤斥水性特征初步研究[J]. 水土保持学报, 2012, 26(1):259-262, 272.[QIN J H, ZHAO L K, SUN H, et al. Preliminary study on the characteristics of soil repellency in the dry valley of Minjiang River[J]. Journal of Soil and Water Conservation, 2012, 26(1):259-262, 272.]
[12] 田雨, 方自力, 谢强, 等. 岷江上游植被在汶川地震中的损毁及灾后恢复状况[J]. 长江流域资源与环境, 2014, 23(5):735-740.[TIAN Y, FANG Z L, XIE Q, et al. Damages situations by Wenchuan Earthquake and recovery status of vegetations in upper Minjiang River basin[J]. Resources and Environment in the Yangtze Basin, 2014, 23(5):735-740.]
[13] 杨兆平, 常禹, 胡远满, 等. 岷江上游干旱河谷景观变化及驱动力分析[J]. 生态学杂志, 2007, 26(6):869-874.[YANG Z P, CHANG Y, HU Y M, et al. Landscape change and its driving forces of dry valley in upper reaches of Minjiang River[J]. Chinese Journal of Ecology, 2007, 26(6):869-874.]
[14] 常晓军, 丁俊, 魏伦武, 等. 岷江上游地质灾害发育分布规律初探[J]. 沉积与特提斯地质, 2007, 27(1):103-108.[CHANG X J, DING J, WEI L W, et al. Distribution of the geological hazards in the upper reaches of the Minjiang River, Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2007, 27(1):103-108.]
[15] 周永娟, 仇江啸, 王姣, 等. 三峡库区消落带生态环境脆弱性评价[J]. 生态学报, 2010, 30(24):6726-6733.[ZHOU Y J, QIU J X, WANG J, et al. Assessment of eco-environmental vulnerability of water-level fluctuation belt in Three-Gorges Reservoir area[J]. Acta Ecologica Sinica, 2010, 30(24):6726-6733.]
[16] 胡凯衡, 崔鹏, 韩用顺, 等. 基于聚类和最大似然法的汶川灾区泥石流滑坡易发性评价[J]. 中国水土保持科学, 2012, 10(1):12-18.[HU K H, CUI P, HAN Y S, et al. Susceptibility mapping of landslides and debris flows in 2008 Wenchuan earthquake by using cluster analysis and maximum likelihood classification methods[J]. Science of Soil and Water Conservation, 2012, 10(1):12-18.]
[17] 徐茂其, 张大泉. 川中丘陵土壤水力侵蚀及防治对策[J]. 水土保持学报, 1992, 6(4):35-42.[XU M Q, ZHANG D Q. Soil water erosion and its preventive strategies in hilly of the central Sichuan basin[J]. Journal of Soil and Water Conservation, 1992, 6(4):35-42.]
[18] 黄方, 刘湘南, 张养贞. GIS支持下的吉林省西部生态环境脆弱态势评价研究[J]. 地理科学, 2003, 23(1):95-100.[HUANG F, LIU X N, ZHANG Y Z. GIS-Based eco-environmental vulnerability evaluation in west Jilin Province[J]. Scientia Geographica Sinica, 2003, 23(1):95-100.]
[19] JENSEN H, REIMANN C, FINNE T E, et al. PAH-concentrations and compositions in the top 2 cm of forest soils along a 120 km long transect through agricultural areas, forests and the city of Oslo, Norway[J]. Environmental Pollution, 2007, 145(3):829-838.
[20] BONHAM-CARTER G F, AGTERBERG F P, WRIGHT D F. Integration of geological datasets for gold exploration in Nova Scotia[J]. American Society for Photogrammetric Engineering Remote Sensing, 1988, 54(11):1585-1592.
[21] 常顺利, 张钟月, 孙志群, 等. 基于GIS的新源县滑坡灾害分析与区划[J]. 自然灾害学报, 2011, 20(5):216-221.[CHANG S L, ZHANG Z Y, SUN Z Q, et al. GIS-based analysis and zoning of landslide hazard in Kunes County[J]. Journal of Natural Disasters, 2011, 20(5):216-221.]
[22] SAATY T L. The Analytic Hierarchy Process[M]. New York:McGraw-Hill Inc., 1980.
[23] 汪树玉, 刘国华. 系统分析[M]. 杭州:浙江大学出版社, 2002.
[24] 李艳豪, 蒋汉朝, 徐红艳, 等. 四川岷江上游滑坡触发因素分析[J]. 地震地质, 2015, 37(4):1147-1161.[LI Y H, JIANG H C, XU H Y, et al. Analyses on the triggering facrors of large quantities of landslides in the upper reaches of the Minjiang River, Sichuan province[J]. Seismology and Geology, 2015, 37(4):1147-1161.]
[25] WANG S Y, LIU J S, YANG C J. Eco-environmental vulnerability evaluation in the Yellow River Basin, China[J]. Pedosphere, 2008, 18(2):171-182.
[1] 潘超, 周驰, 苗滕, 刘林峰, 高健, 焦一滢, 李祝, 张佳敏, 王卉君, 徐德雄. 长江流域鄂西四河流大型底栖动物群落结构特征及水质生物学评价[J]. 长江流域资源与环境, 2018, 27(11): 2529-2539.
[2] 杨洋, 张玮, 潘宏博, 顾琬雯, 郝瑞娟, 熊春晖, 王丽卿. 滆湖轮虫群落结构及其与水环境因子的关系[J]. 长江流域资源与环境, 2017, 26(06): 832-840.
[3] 李智, 范琳芸, 张小林. 基于村域的乡村多功能类型划分及评价研究——以江苏省金坛市为例[J]. 长江流域资源与环境, 2017, 26(03): 359-367.
[4] 向龙, 刘平辉, 杨迎亚. 华东某铀矿区稻米中放射性核素铀污染特征及健康风险评价[J]. 长江流域资源与环境, 2017, 26(03): 419-427.
[5] 王秀, 王振祥, 潘宝, 周春财, 刘桂建. 南淝河表层水中重金属空间分布、污染评价及来源[J]. 长江流域资源与环境, 2017, 26(02): 297-303.
[6] 陈诚, 林晨. 苏南地区耕地质量评价与分区保护研究[J]. 长江流域资源与环境, 2016, 25(12): 1860-1869.
[7] 樊敏, 郭亚琳, 李富程, 王青. 岷江上游山区聚落生态位地理特征与驱动因子间关系研究[J]. 长江流域资源与环境, 2016, 25(11): 1687-1696.
[8] 冷龙龙, 张海萍, 张敏, 李天科, 刘晓波, 渠晓东. 大型底栖动物快速评价指数BMWP在太子河流域的应用[J]. 长江流域资源与环境, 2016, 25(11): 1781-1788.
[9] 姜海, 白璐, 雷昊, 赵海燕, 吴昊. 基于效果-效率-适应性的养殖废弃物资源化利用管理模式评价框架构建及初步应用[J]. 长江流域资源与环境, 2016, 25(10): 1501-1508.
[10] 任俊霖, 李浩, 伍新木, 李雪松. 基于主成分分析法的长江经济带省会城市水生态文明评价[J]. 长江流域资源与环境, 2016, 25(10): 1537-1544.
[11] 李文浩, 张萌, 门吉帅, 敖雪夫, 胡新艳, 欧阳珊, 吴小平. 江西仙女湖流域大型底栖动物群落结构及水质评价[J]. 长江流域资源与环境, 2016, 25(08): 1218-1227.
[12] 闫思宇, 王景燕, 龚伟, 罗建跃, 苏黎明, 舒正悦, 赵昌平, 蔡煜. 川南山地林分变化对土壤物理性质和抗蚀性的影响[J]. 长江流域资源与环境, 2016, 25(07): 1112-1120.
[13] 周天舒, 张亚, 唐文乔, 王丽卿. 基于鱼类完整性指数的黄浦江水生态系统评价[J]. 长江流域资源与环境, 2016, 25(06): 895-903.
[14] 陆张维, 徐丽华, 吴亚琪. 基于适宜性评价的中心城区建设用地布局——以杭州市为例[J]. 长江流域资源与环境, 2016, 25(06): 904-912.
[15] 党丽娜, 梅杨, 廖祥森, 刘颖颖. 城市不同交通圈(带)土壤重金属多元统计分析及空间分布研究——以武汉市为例[J]. 长江流域资源与环境, 2016, 25(06): 925-931.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[2] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[3] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[4] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[5] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[6] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[7] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[8] 梁流涛, 曲福田, 王春华. 基于DEA方法的耕地利用效率分析[J]. 长江流域资源与环境, 2008, 17(2): 242 .
[9] 罗璐琴, 周敬宣, 李湘梅. 生态足迹动态预测模型构建与分析[J]. 长江流域资源与环境, 2008, 17(3): 440 .
[10] 刘德富,黄钰铃,| 王从锋,. 水工学的发展趋势——从传统水工学到生态水工学[J]. 长江流域资源与环境, 2007, 16(1): 92 -96 .