长江流域资源与环境 >> 2015, Vol. 24 >> Issue (07): 1126-1132.doi: 10.11870/cjlyzyyhj201507007

• 自然资源 • 上一篇    下一篇

长江上游支流老河沟鱼类群落结构的时空格局

雷娟1,3, 梁阳阳1,3, 隋晓云1,2, 陈毅峰1   

  1. 1. 中国科学院水生生物研究所, 湖北 武汉 430072;
    2. 北京大学生命科学学院, 北京 10087;
    3. 中国科学院大学, 北京 100039
  • 收稿日期:2014-08-06 修回日期:2014-09-29 出版日期:2015-07-20
  • 作者简介:雷娟(1985~),女,博士研究生,主要从事鱼类生态学方面的研究.E-mail:leijuanhb@163.com
  • 基金资助:
    国家自然科学基金重点项目(41030208);美国大自然保护协会(TNC);四川大自然保护基金会(SNCF)

STRUCTURE AND SPATIAL-TEMPORAL PATTERN OF FISH ASSEMBLAGE IN THE LAOHEGOU STREAM, SICHUAN PROVINCE, CHINA

LEI Juan1,3, LIANG Yang-yang1,3, SUI Xiao-yun1,2, CHEN Yi-feng1   

  1. 1. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
    2. School of Life Sciences, Peking University, Beijing 100871, China;
    3. University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2014-08-06 Revised:2014-09-29 Online:2015-07-20
  • Contact: 隋晓云,E-mail:xiaoyunsui@ihb.ac.cn E-mail:xiaoyunsui@ihb.ac.cn

摘要: 2012年3月、6月、9月和12月按季度对涪江支流老河沟的14个样点进行了鱼类群落结构调查和分析。共采集鱼类11种,隶属于2目4科;其中,鲤形目鱼类7种,占物种数的63.64%。沿上游源头到下游的纵向梯度方向,老河沟鱼类的种类数和丰度均逐渐增加,具极显著性差异,而鱼类种类数和丰度则无季节差异性。聚类分析(Cluster Analysis)和多维尺度分析(MDS)表明,当Bray-curtis相似度矩阵值为40.77%时,老河沟鱼类群落分成上游、中游和下游3组。利用相似度百分比分析(SIMPER)确定,引起3组差异性的特定鱼类是宽鳍鱲、尖头、似()、齐口裂腹鱼、贝氏高原鳅、红尾荷马条鳅和青石爬鮡。典型相关分析(CCA)表明海拔、底质类型、流速、溶氧、总溶解固体、水温、电导率、河宽、pH值和水深等环境变量是老河沟鱼类群落时空格局差异的影响因子。

关键词: 长江上游, 老河沟, 鱼类群落, 时空格局, 影响因子

Abstract: The Laohegou Stream is the third-grade tributary of Yangtze River in Sichuan Province. By the field sampling and data analysis from 14 sites in Laohegou Stream in each season in 2012, a total of 11 species were recorded, representing 4 families and 4 orders. Among which, 7 species belong to Cypriniformes, accounting for 63.64% of the total. Some species of them, such as Rhynchocypris oxycephalus, Triplophysa bleekeri, Homatula variegate, and Euchiloglanis kishinouyei, were common species. They completed their life history in a relatively short river reach. While Misgurnus anguillicaudatus, Pseudobagrus truncates, and Pseudobagrus tenuifurcatus were occasional species, and only appeared in the wet seasons of the Laohegou Stream. Our result showed that species richness and individual abundance of fish increased gradually along the longitudinal gradient from the headwater to the stream outlet. The highest species richness and individual abundance were observed in summer and winter, respectively. And the lowest values of them were ascertained in spring and summer. Result from One way ANOVA indicated that species richness and individual abundances showed significant difference between the 14 sites (P<0.01), while they showed no significant differences between seasons (P>0.05). Cluster analysis and multidimensional scaling (MDS) were performed to examine the spatial distribution pattern of fish. It suggested that the fish assemblage were separated into three groups-upper, middle and lower reaches on a Bray-Curtis similarity value of 40.77%. Results from the analysis of similarities (ANOSIM) suggested that the fish assemblage were significant difference among the upper, middle and lower reach of the Laohegou Stream (Global R=0.722; P<0.01). Through analysis of similarity percentages of species contributions (SIMPER), we determined the specific species such as Zacco platypus, Belligobio nummifer, Schizothorax prenanti, R.oxycephalus, T.bleekeri, H.variegata and E.kishinouyei which result in significantly different among the three groups. Results from the canonical correspondence analysis (CCA) indicated that elevation, substrate, flow velocity, dissolved oxygen, conductivity, total dissolved solid, water temperature, pH and water depth were impact factors resulting in difference in the spatial and temporal pattern of fish assemblages in the Laohegou Stream.

Key words: upper Yangtze River, Laohegou Sream, fish assemblages, spatial and temporal pattern, impact factors

中图分类号: 

  • Q178.1+4
[1] GROSSMAN G D,RATAJCZAK J,ROBERT E,et al.Assemblage organization in stream fishes:effects of environmental variation and interspecific interactions[J].Ecological Monographs,1998,68(3):395-420.
[2] HOEINGHAUS D J,WIMEMILLER K O,BIRNBAUM J S.Local and regional determinants of stream fish assemblage structure:inferences based on taxonomic vs.functional groups[J].Journal of Biogeography,2007,34:324-338.
[3] JACKSON D A,PERES-NETO P R,OLDEN J D.What controls who is where in freshwater fish communities the roles of biotic,abiotic,and spatial factors[J].Canadian Journal of Fisheries and Aquatic Sciences,2001,58(1):157-170.
[4] DAUWALTER D C,SPLINTER D K,FISHER W L,et al.Biogeography,ecoregions and geomorphology affect fish species composition in streams of eastern Oklahoma,USA[J].Environmental Biology of Fishes,2008,82(3):237-249.
[5] JOHNSON J,ARUNACHALAM M.Relations of physical habitat to fish assemblages in streams of Western Ghats,India[J].Applied Ecology and Environmental Research,2010,8(1):1-10.
[6] MATTHEWS W J.Fish faunal structure in an Ozark stream:stability,persistence and a catastrophic flood[J].Copeia,1986,388-397.
[7] ERÖS T,GROSSMAN G D.Effects of within-patch habitat structure and variation on fish assemblage characteristics in the Bernecei stream,Hungary[J].Ecology of Freshwater Fish,2005,14(3):256-266.
[8] YAN Y Z,HE S,CHU L,et al.Spatial and temporal variation of fish assemblages in a subtropical small stream of the Huangshan Mountain[J].Current Zoology,2010,56(6):670-677.
[9] HE Y F,WANG J W,LEK S,et al.Structure of endemic fish assemblages in the upper Yangtze River Basin[J].River Research and Applications,2011,27(1):59-75.
[10] 杨少荣.长江流域鱼类群落生态学研究[D].武汉:中国科学院水生生物研究所博士学位论文,2012.
[11] 刘 飞.赤水河鱼类群落生态学研究[D].武汉:中国科学院水生生物研究所博士学位论文,2013.
[12] 四川省嘉陵江水系鱼类资源调查组.嘉陵江水系鱼类资源调查报告[M].成都:四川省嘉陵江水系鱼类资源调查组出版,1980:1-317.
[13] 严云志,郭丽丽,陶 捐,等.黄山浮溪,香溪和浦溪上游鱼类资源现状的调查研究[J].生物学杂志,2007,24(3):41-44.
[14] 朱松泉.中国淡水鱼类检索[M].南京:江苏科学技术出版社,1995:1-549.
[15] 陈宜瑜.中国动物志·硬骨鱼纲·鲤形目(中卷)[M].北京:科学出版社,1998:1-531.
[16] 乐佩琦.中国动物志·硬骨鱼纲·鲤形目(下卷)[M].北京:科学出版社,2000:1-661.
[17] 程建丽,张 鹗.拟鲿属鱼类分类学研究概况[J].井冈山大学学报(自然科学版),2012:94-98.
[18] BÂNÂRESCU P,NALBANT T T.Nemacheilinae with description of two new genera (Teleostei:Cypriniformes:Cobitidae)[J].Travaux du Muséum National D'Histoire Naturelle,1995,35:429-496.
[19] BAIN M B,FINN J T,BOOKE H E.Quantifying stream substrate for habitat analysis studies[J].North American Journal of Fisheries Management,1985,5(3B):499-500.
[20] KREBS C J.Ecological methodology[M].New York:Harper & Row Publishers,1989.
[21] BRAY J R,CURTIS J T.An ordination of the upland forest communities of southern Wisconsin[J].Ecological Monographs,1957,27:325-349.
[22] CLARKE K,WARWICK R.Changes in marine communities:an approach to statistical analysis and interpretation,2nd Edition[M].Plymouth,United Kingdom:PRIMER-E Ltd,2001:1-172.
[23] MCCUNE B,GRACE J B,URBAN D L.Analysis of ecological communities[M].M G M Software Design (Or),2002:1-300.
[24] TER BRAAK C J,VERDONSCHOT P F.Canonical correspondence analysis and related multivariate methods in aquatic ecology[J].Aquatic Sciences,1995,57(3):255-289.
[25] BELYEA L R,LANCASTER J.Assembly rules within a contingent ecology[J].Oikos,1999:402-416.
[26] GROSSMAN G D,DOWD J F,CRAWFORD M.Assemblage stability in stream fishes:a review[J].Environmental Management,1990,14(5):661-671.
[27] ALKINS-KOO M.Reproductive timing of fishes in a tropical intermittent stream[J].Environmental Biology of Fishes,2000,57(1):49-66.
[28] TAYLOR C M,WARREN Jr.M L.Dynamics in species composition of stream fish assemblages:environmental variability and nested subsets[J].Ecology,2001,82(8):2320-2330.
[29] LOWE-MAC CONNELL R H.Ecological studies in tropical fish communities[M].Cambridge University Press,1987:1-382.
[1] 孔锋, 杨萍, 王品, 吕丽莉, 孙劭. 中国灾害性对流天气日数的时空变化特征[J]. 长江流域资源与环境, 2018, 27(11): 2518-2528.
[2] 叶学瑶, 陶敏, 朱光平, 胡林, 陈发军, 李斌. 三峡库区小江鱼类群落特征及其历史变化[J]. 长江流域资源与环境, 2017, 26(06): 841-846.
[3] 武晓静, 杜德斌, 肖刚, 管明明. 长江经济带城市创新能力差异的时空格局演变[J]. 长江流域资源与环境, 2017, 26(04): 490-499.
[4] 王俊, 苏巍, 杨少荣, 姜伟. 金沙江一期工程蓄水前后绥江段鱼类群落多样性特征[J]. 长江流域资源与环境, 2017, 26(03): 394-401.
[5] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[6] 毛婉柳, 徐建华, 卢德彬, 杨东阳, 赵佳楠. 2015年长三角地区城市PM2.5时空格局及影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 264-272.
[7] 祁海霞, 王晓玲, 李银娥, 白永清. 长江上游中小洪水天气学机理分析及致洪特征[J]. 长江流域资源与环境, 2016, 25(Z1): 83-94.
[8] 张雅杰, 马明, 许刚. 长江中游城市群经济与生态成本空间演化模式分析[J]. 长江流域资源与环境, 2016, 25(11): 1679-1686.
[9] 胡小飞, 傅春, 陈伏生, 杨丽. 基于水足迹的区域生态补偿标准及时空格局研究[J]. 长江流域资源与环境, 2016, 25(09): 1430-1437.
[10] 汤勇, 张薇, 薛俊增, 陈立婧. 长江口大洋山近岸水域浮游植物群落及其与环境因子的关系[J]. 长江流域资源与环境, 2016, 25(08): 1176-1183.
[11] 刘睿, 周李磊, 彭瑶, 嵇涛, 李军, 张虹, 戴技才. 三峡库区重庆段土壤保持服务时空分布格局研究[J]. 长江流域资源与环境, 2016, 25(06): 932-942.
[12] 吕文, 杨桂山, 万荣荣. 太湖流域近25年土地利用变化对生态耗水时空格局的影响[J]. 长江流域资源与环境, 2016, 25(03): 445-452.
[13] 肖刚, 杜德斌, 李恒, 戴其文. 长江中游城市群城市创新差异的时空格局演变[J]. 长江流域资源与环境, 2016, 25(02): 199-207.
[14] 何勇凤, 李昊成, 王旭歌, 朱永久, 杨德国. 长湖鱼类群落结构的时空变化[J]. 长江流域资源与环境, 2016, 25(02): 265-273.
[15] 刘耀林, 范建彬, 孔雪松, 张梦珂, 刘艳芳. 中国城市土地消耗强度的时空格局与收敛性分析[J]. 长江流域资源与环境, 2016, 25(01): 113-119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟爱云, 濮励杰. 区域耕地数量变化与工业化、城市化进程相互关系探讨——以江苏省为例[J]. 长江流域资源与环境, 2008, 17(2): 237 .
[2] 田晓四, 陈 杰,朱 诚,朱同林. 南京市经济增长与工业“三废”污染水平计量模型研究[J]. 长江流域资源与环境, 2007, 16(4): 410 .
[3] 贾泽露,. GIS与SDM集成构建土地定级专家信息系统的研究[J]. 长江流域资源与环境, 2007, 16(3): 323 .
[4] 胥 晓|郑伯川|陈友军. 嘉陵江流域植被景观的空间格局特征[J]. 长江流域资源与环境, 2007, 16(3): 373 .
[5] 谢 洪,钟敦伦,李 泳,韦方强. 长江上游泥石流灾害的特征[J]. 长江流域资源与环境, 2004, 13(1): 94 -99 .
[6] 崔 鸿, 汪 亮,. 略论我国长江渔业资源的法律保护[J]. 长江流域资源与环境, 2006, 15(1): 58 -60 .
[7] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[8] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[9] 徐慧娟,黎育红,孙燕. 长江宜昌水文站流量、含沙量和悬移质粒度关系[J]. 长江流域资源与环境, 2006, 15(Sup1): 110 -115 .
[10] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .