长江流域资源与环境 >> 2017, Vol. 26 >> Issue (05): 678-686.doi: 10.11870/cjlyzyyhj201705004

• 生态环境 • 上一篇    下一篇

长江水δ18O和δD时空变化特征及其影响因素分析

周毅1, 吴华武2,3, 贺斌2,3, 李静4, 段伟利2,3, 王建锋5, 童世贤5   

  1. 1. 江苏省水文水资源勘测局, 江苏 南京 210008;
    2. 中国科学院南京地理与湖泊研究所, 江苏 南京 210008;
    3. 中国科学院流域地理学重点实验室, 江苏 南京 210008;
    4. 九江学院 旅游与国土资源学院, 江西 九江 332005;
    5. 青海省铁卜加草原改良试验站, 青海 813000
  • 收稿日期:2016-09-23 修回日期:2016-12-29 出版日期:2017-05-20
  • 通讯作者: 吴华武 E-mail:wuhuawu416@163.com
  • 作者简介:周毅(1974~),男,高级工程师,研究方向为水文水资源.E-mail:zhouyi_nj@foxmail.com
  • 基金资助:
    国家自然科学基金项目(41471460,42501552);中国科学院“百人计划”项目(Y5BR011001);中国科学院南京地理与湖泊研究所青年启动项目(Y7SL011001)

STUDY ON SPATIAL AND TEMPORAL VARIATIONS OF δ18O AND δD IN YANGTZE RIVER WATER AND ITS FACTORS

ZHOU Yi1, WU Hua-wu2,3, HE Bin2,3, LI Jing4, DUAN Wei-li2,3, WANG Jian-feng5, TONG Shi-xian5   

  1. 1. Jiangsu Province Hydrology and Resources Investigation Bureau, Nanjing 210008, China;
    2. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    3. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China;
    4. College of Tourism and Territorial Resources, Jiujiang University, Jiujiang 332005, China;
    5. Tiebujia Grassland Improvement Experiment Station, Qinghai 813000, China
  • Received:2016-09-23 Revised:2016-12-29 Online:2017-05-20
  • Supported by:
    National Natural Science Foundation of China (41471460, 41501552);One Hundred Projects, Chinese Academy of Sciences (Y5BR011001);The youth Startup Project, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (Y7SL011001)

摘要: 稳定同位素示踪技术已成为研究河流的水文过程及其变化的重要手段,尤其在河网交错密集和水力关系复杂的长江流域。通过分析枯水期和丰水期长江水及大气降水中δ18O和δD组成的变化,揭示其时空变化特征及其影响因素。结果发现长江流域大气降水δ18O组成表征出明显的空间分布差异特征,长江河源区降水δ18O值最低,随着海拔高度降低降水中δ18O值自长江上游向下游地区逐渐减小,这与流域的水汽来源及海拔高度密切有关;枯水期长江水δ18O和δD值明显要高于丰水期,原因在于丰水期河水受到较弱的蒸发富集作用和大量降水补给影响;无论在丰水期还是枯水期长江水自上游到下游其同位素值呈逐渐增大的趋势,这主要受不同河段支流和湖泊等水体补给的影响。三峡大坝的蓄水和放水过程对河水同位素组成产生一定的影响,丰水期对相应河段河水同位素组成的影响不大,但在枯水期则影响较为明显,这将对充分认识长江流域大气降水-河水-湖水间水力联系与探讨其水资源合理利用提供科学依据。

关键词: 稳定同位素, 河水, 降水, 三峡大坝, 长江流域

Abstract: Stable isotope methods are important tools for investigating the riverine hydrological processes and its variations, especially in the Yangtze Basin with densely staggered riverine network and complex hydraulic linkages. This study investigated the δ18O and δD in Yangtze River water and precipitation to reveal the spatiotemporal variations of isotopic compositions and their factors during the wet and dry seasons. The results showed that the δ18O in precipitation experienced an evident spatial variation in the Yangtze River Basin. Low δ18O values were found in the Yangtze sources and become decreased from the upper reaches to lower reaches of Yangtze River, which was closely associated with its moisture source and altitude. The δ18O and δD of river water in the dry season showed greater than those in wet season attributing to weaker evaporation enrichment and greater precipitation recharge in the wet season. Despite of the wet and dry seasons, the stable isotopic contents exhibited an increase trend from the upstream to downstream mainly attributing to the recharge of tributary and lake along the Yangtze River. In addition, this study also revealed that the effect of impoundment and drain by Three Gorges Reservoir on the river isotopic compositions was greater in the dry season than those in the wet season. These findings will provide the scientific evidences on recognizing the precipitation-river-lake hydraulic linkages and investigating the rational utilization and management of water resources in the Yangtze River Basin.

Key words: stable isotopes, river, precipitation, Three Gorges Reservoir, Yangtze River basin

中图分类号: 

  • P331.3
[1] JIAO L.Scientists line up against dam that would alter protected wetlands[J].Science,2009,326(5952):508-509.
[2] 郭华,HU Q,张奇,等.鄱阳湖流域水文变化特征成因及旱涝规律[J].地理学报,2012,67(5):699-709.[GUO H,HU Q,ZHANG Q,et al.Annual variations in climatic and hydrological processes and related flood and drought occurrences in the Poyang Lake Basin[J].Acta Geographica Sinica,2012,67(5):699-709.]
[3] 姜彤,施雅风.全球变暖、长江水灾与可能损失[J].地球科学进展,2003,18(2):277-284.[JIANG T,SHI Y F.Global climatic warming,the Yangtze floods and potential loss[J].Advance in Earth Sciences,2003,18(2):277-284.]
[4] 尹辉,杨波,蒋忠诚,等.近60年洞庭湖泊形态与水沙过程的互动响应[J].地理研究,2012,31(3):471-483.[YIN H,YANG B,JIANG Z C,et al.Mutual effects between morphological characteristics and variations of flow-sediment process of Dongting Lake during 1951~2009[J].Geographical Research,2012,31(3):471-483.]
[5] 宫平,杨文俊.三峡水库建成后对长江中下游江湖水沙关系变化趋势初探Ⅱ.江湖关系及槽蓄影响初步研究[J].水力发电学报,2009,28(6):120-125.[GONG P,YANG W J.Preliminary study of river-lake evolution effect due to Three Gorges progect.Part 2.The effect on river-lake relation and channel storage capacity[J].Journal of Hydroelectric Engineering,2009,28(6):120-125.]
[6] 刘志刚,倪兆奎.鄱阳湖发展演变及江湖关系变化影响[J].环境科学学报,2015,35(5):1265-1273.[LIU Z G,NI Z K.The rules and the effects of varing river-lake relationships on the evolution of Poyang Lake[J].Acta Scientiae Circumstantiae,2015,35(5):1265-1273.]
[7] 姜加虎,王苏民.长江流域水资源、灾害及水环境状况初步分析[J].第四纪研究,2004,24(5):512-517.[JIANG J H,WANG S M.Primary analyse of water resource,disasters and environment in the Changjiang river catchment[J].Quaternary Sciences,2004,24(5):512-517.]
[8] 田立德,姚檀栋,沈永平,等.青藏高原那曲河流域降水及河流水体中氧稳定同位素研究[J].水科学进展,2002,13(2):206-210.[TIAN L D,YAO T D,SHEN Y P,et al.Study on stable isotope in river water and precipitation in Naqu River basin,Tibetan Plateau[J].Advances in Water Science,2002,13(2):206-210.]
[9] 黄一民,宋献方,章新平,等.洞庭湖流域不同水体中同位素研究[J].地理科学,2016,36(8):1252-1260.[HUANG Y M,SONG X F,ZHANG X P,et al.Stable water isotopes of different water bodies in the Dongting lake basin[J].Scientia Geographica Sinica,2016,36(8):1252-1260.]
[10] 张应华,仵彦卿,温小虎,等.环境同位素在水循环研究中的应用[J].水科学进展,2006,17(5):738-747.[ZHANG Y H,WU Y J,WEN X F.Application of environmental isotopes in water cycle[J].Advances in Water Science,2006,17(5):738-747.]
[11] 张亚男,甘义群,李小倩,等.2013年长江丰水期河水化学特征及控制因素[J].长江流域资源与环境,2016,25(4):645-654.[ZHANG Y N,GAN Y Q,LI X Q,et al.Water chemical characteristics and controlling factors of the Yangtze river in the wet season,2013[J].Resources and Environment in the Yangtze Basin,2016,25(4):645-654.]
[12] 陈建生,彭靖,詹泸成,等.鄱阳湖流域河水、湖水及地下水同位素特征分析[J].水资源保护,2015,31(4):1-7.[CHEN J S,PENG J,ZHAN L C,et al.Analysis of isotopes characteristics of river water,lake water and groundwater in Poyang Lake Basin[J].Water Resources Protection,2015,31(4):1-7.]
[13] DING T P,GAO J F,TIAN S H,et al.Chemical and isotopic characteristics of the water and suspended particulate materials in the Yangtze River and their geological and environmental implications[J].Acta Geologica Sinica (English Edition),2014,88(1):276-360.
[14] DENG K,YANG S Y,LIAN E G,et al.Three gorges dam alters the Changjiang (Yangtze) river water cycle in the dry seasons:evidence from H-O isotopes[J].Science of the Total Environment,2016,562:89-97.
[15] LI S L,LIU C Q,LI J,et al.Assessment of the sources of nitrate in the Changjiang river,China using a nitrogen and oxygen isotopic approach[J].Environmental Science&Technology,2010,44(5):1573-1578.
[16] 柳鉴容.不同尺度的降水稳定同位素与气候变量关系研究[D].北京:中国科学院研究生院博士学位论文,2011.[LIU J R.Relationships between stable precipitation isotopes and climate variables under different temporal and Spatial Scales[D].Beijing:Doctor Dissertation of University of Chinese Academy of Sciences,2011.]
[17] DANSGAARD W.Stable isotopes in precipitation[J].Tellus,1964,16(4):436-468.
[18] MERLIVAT L,JOUZEL J.Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation[J].Journal of Geophysical Research,1979,84(C8):5029-5033.
[19] YAO T D,MASSON-DELMOTTE V,GAO J,et al.A review of climatic controls on δ18O in precipitation over the Tibetan Plateau:observations and simulations[J].Reviews of Geophysics,2013,51(4):525-548.
[20] 章新平,刘晶淼,孙维贞,等.中国西南地区降水中氧稳定同位素比率与相关气象要素之间关系的研究[J].中国科学D辑地球科学,2006,36(9):850-859.[ZHANG X P,LIU J M,SUN W Z,et al.Relations between oxygen stable isotopic ratios in precipitation and relevant meteorological factors in southwest China[J].Science in China Series D:Earth Sciences,2007,50(4):571-581.]
[21] 吴敬禄,林琳,曾海鳌,等.长江中下游湖泊水体氧同位素组成[J].海洋地质与第四纪地质,2006,26(3):53-56.[WU J L,LIN L,ZENG H A,et al.Characteristics of oxygen isotopic composition of the lakes along the mid-lower reaches of the Yangtze River[J].Marine Geology&Quaternary Geology,2006,26(3):53-56.]
[22] KENDALL C,COPLEN T B.Distribution of oxygen-18 and deuterium in river waters across the United States[J].Hydrological Processes,2001,15(7):1363-1393.
[23] 徐庆,蒋有绪,刘世荣,等.卧龙巴郎山流域大气降水与河水关系的研究[J].林业科学研究,2007,20(3):297-301.[XU Q,JIANG Y X,LIU S R,et al.Study on the relationship between precipitation and river water at Balang Mountain watershed in Wolong Nature Reserve of Sichuan Province[J].Forest Research,2007,20(3):297-301.]
[24] 詹泸成,陈建生,张时音.洞庭湖湖区降水-地表水-地下水同位素特征[J].水科学进展,2014,25(3):327-335.[ZHAN L C,CHEN J S,ZHANG S Y.Characteristics of stable isotopes in precipitation,surface water and groundwater in the Dongting Lake region[J].Advances in Water Science,2014,25(3):327-335.]
[25] 康世昌,张拥军,秦大河,等.近期青藏高原长江源区急剧升温的冰芯证据[J].科学通报,2007,52(4):457-462.[KANG S C,ZHANG Y J,QIN D H,et al.Recent temperature increase recorded in an ice core in the source region of Yangtze River[J].Chinese Science Bulletin,2007,52(6):825-831.]
[26] XU Q,HOKE G D,JING L Z,et al.Stable isotopes of surface water across the Longmenshan margin of the eastern Tibetan Plateau[J].Geochemistry,Geophysics,Geosystems,2014,15(8):3416-3429.
[27] 章新平,姚檀栋.我国降水中δ18O的分布特点[J].地理学报,1998,53(4):356-364.[ZHANG X P,YAO T D.Distributional features of δ18O in precipitation in China[J].Acta Geographica Sinica,1998,53(4):356-363.]
[28] CRAIG H.Isotopic variations in meteoric waters[J].Science,1961,133(3465):1702-1703.
[29] 章新平,姚檀栋.青藏高原东北地区现代降水中δD与δ18O的关系研究[J].冰川冻土,1996,18(4):360-365.[ZHANG X P,YAO T D.Relations between δD and δ18O in precipitation at present in the northeast Tibetan Plateau[J].Journal of Glaciology and Geocryology,1996,18(4):360-365.]
[30] ARAGUÁS-ARAGUÁS L,FROEHLICH K,ROZANSKI K.Stable isotope composition of precipitation over southeast Asia[J].Journal of Geophysical Research,1998,103(D22):28721-28742.
[31] 姚天次,章新平,李广,等.湘江流域岳麓山周边地区不同水体中氢氧稳定同位素特征及相互关系[J].自然资源学报,2016,31(7):1198-1221.[YAO T C,ZHANG X P,LI G,et al.Characteristics of the Stable isotopes in different water bodies and their relationships in surrounding areas of Yuelu Mountain in the Xiangjiang River Basin[J].Journal of Natural Resources,2016,31(7):1198-1221.]
[32] 李廷勇,李红春,沈川洲,等.2006~2008年重庆大气降水δD和δ18O特征初步分析[J].水科学进展,2010,21(6):757-764.[LI T Y,LI H C,SHEN C Z,et al.Study on the δD and δ18O characteristics of meteoric precipitation during 2006-2008 in Chongqing,China[J].Advances in Water Science,2010,21(6):757-764.]
[33] 沈业杰,彭新华.鹰潭地区大气降水中氢氧稳定同位素特征研究[J].生态环境学报,2014,23(1):101-105.[SHEN Y J,PENG X H.Stable isotopes of hydrogen and oxygen in the precipitation of Yingtan[J].Ecology and Environmental Sciences,2014,23(1):101-105.]
[34] 崔江鹏,田立德,刘琴,等.青藏高原中部大气水汽稳定同位素捕捉到印度洋台风"费林"信号[J].科学通报,2014,59(35):3526-3532.[CUI J P,TIAN L D,LIU Q,et al.Signal of typhoon Phailin from Indian Ocean captured by atmospheric water vapor isotope,central Tibetan Plateau[J].Chinese Science Bulletin,2014,59(35):3526-3532.]
[1] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[2] 陈红. 长江中下游夏季极端降水事件频次的统计降尺度模拟与预估[J]. 长江流域资源与环境, 2017, 26(05): 771-777.
[3] 刘俸霞, 王艳君, 赵晶, 陈雪, 姜彤. 全球升温1.5℃与2.0℃情景下长江中下游地区极端降水的变化特征[J]. 长江流域资源与环境, 2017, 26(05): 778-788.
[4] 潘欣, 尹义星, 王小军. 1960~2010年长江流域极端降水的时空演变及未来趋势[J]. 长江流域资源与环境, 2017, 26(03): 436-444.
[5] 赵平伟, 郭萍, 李立印, 舒珺. SPEI及SPI指数在滇西南地区干旱演变中的对比分析[J]. 长江流域资源与环境, 2017, 26(01): 142-149.
[6] 董林垚, 许文盛, 胡波, 石劲松, 朱秀迪. 三峡蓄水前后宜昌-城陵矶水情多尺度变化特征分析[J]. 长江流域资源与环境, 2016, 25(12): 1870-1878.
[7] 徐明, 王晓芳, 高琦, 汪小康, 赖安伟. 基于TRMM卫星资料揭示的长江流域梅雨季节降水日变化[J]. 长江流域资源与环境, 2016, 25(12): 1934-1944.
[8] 黄钰瀚, 张增信, 费明哲, 金秋. TRMM 3B42卫星降水数据在赣江流域径流模拟中的应用[J]. 长江流域资源与环境, 2016, 25(10): 1618-1625.
[9] 龚艳冰, 戴靓靓, 胡娜, 刘高峰, 张继国. 基于云推理和模糊逻辑关系模型的干旱等级预测方法研究[J]. 长江流域资源与环境, 2016, 25(08): 1273-1278.
[10] 邵骏, 欧应钧, 陈金凤, 郭卫. 基于水贫乏指数的长江流域水资源安全评价[J]. 长江流域资源与环境, 2016, 25(06): 889-894.
[11] 陈阿娇, 贺新光, 秦建新, 章新平. 长江流域近51a来日降水时空变异的多尺度特征[J]. 长江流域资源与环境, 2016, 25(05): 794-803.
[12] 翟菁, 刘慧娟, 黄勇, 邱学兴, 霍彦峰. 安徽省热对流短时强降水的判别与特征分析[J]. 长江流域资源与环境, 2016, 25(05): 837-844.
[13] 丁文荣. 环洱海地区气候变化特征研究[J]. 长江流域资源与环境, 2016, 25(04): 599-605.
[14] 潘鑫, 刘元波. 1983~2012年长江流域地表净辐射变化特征[J]. 长江流域资源与环境, 2016, 25(03): 486-496.
[15] 唐宝琪, 延军平, 李双双, 刘永林. 近55年来华东地区旱涝时空变化特征[J]. 长江流域资源与环境, 2016, 25(03): 497-505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向 波,纪昌明,蓝霄峰,罗庆松. 地下水非稳定流问题的有限分析五点格式[J]. 长江流域资源与环境, 2007, 16(6): 721 .
[2] 刘传江,朱劲松. 三峡库区土地资源承载力现状与可持续发展对策[J]. 长江流域资源与环境, 2008, 17(4): 522 .
[3] 龙开胜, 陈利根, 李明艳. 工业化、城市化对耕地数量变化影响差异分析[J]. 长江流域资源与环境, 2008, 17(4): 579 .
[4] 肖思思, 黄贤金, 彭补拙, 濮励杰, 陈 逸. 经济发达县域耕地土壤重金属污染评价及其影响因素分析[J]. 长江流域资源与环境, 2007, 16(5): 674 .
[5] 陈 逸,黄贤金,彭补拙,濮励杰,张 健 . 经济发达区不同土地利用方式下土壤中镉的含量特征——以江苏省昆山市为例[J]. 长江流域资源与环境, 2007, 16(3): 391 .
[6] 赵 媛,郝丽莎. 江苏省电力工业空间结构优化研究[J]. 长江流域资源与环境, 2006, 15(3): 292 -297 .
[7] 魏显虎|杜耘,蔡述明,薛怀平,刘韬,. 清江流域1995~2000年土壤侵蚀时空变化[J]. 长江流域资源与环境, 2006, 15(Sup1): 120 -124 .
[8] 姚书春,薛 滨,夏威岚. 洪湖历史时期人类活动的湖泊沉积环境响应[J]. 长江流域资源与环境, 2005, 14(4): 475 -480 .
[9] 张 燕,彭补拙,窦贻俭,金 峰,杨 浩. 水质约束条件下确定土壤允许流失量的方法[J]. 长江流域资源与环境, 2005, 14(1): 109 -113 .
[10] 李成范,刘岚, 周廷刚,张力, 吴忠芳. 基于定量遥感技术的重庆市热岛效应[J]. 长江流域资源与环境, 2009, 18(1): 60 .