长江流域资源与环境 >> 2016, Vol. 25 >> Issue (07): 1093-1102.doi: 10.11870/cjlyzyyhj201607011

• 生态环境 • 上一篇    下一篇

土地利用变化下沿海地区吸附态磷负荷动态变化研究

臧玉珠1,2, 林晨2, 金志丰3, 方飞4, 周生路1   

  1. 1. 南京大学地理与海洋科学学院, 江苏 南京 210023;
    2. 中国科学院流域地理学重点实验室-中国科学院南京地理与湖泊研究所, 江苏 南京 210008;
    3. 江苏省土地勘测规划院, 江苏 南京 210024;
    4. 扬州市江都区国土资源局, 江苏 扬州 225200
  • 收稿日期:2015-11-13 修回日期:2016-01-21 出版日期:2016-07-20
  • 通讯作者: 林晨 E-mail:clin@niglas.ac.cn
  • 作者简介:臧玉珠(1990~),女,硕士研究生,主要从事土地评价与土地生态环境研究.E-mail:zangyuzhu1990@sina.com
  • 基金资助:
    国土资源部海岸带开发与保护重点实验室开放基金项目(NO.2015CZEPK01)

RESEARCH ON THE DYNAMIC CHANGE OF ABSORBED PHOSPHORUS LOAD UNDER LAND USE CHANGE BACKGROUND IN THE COASTAL AREAS

ZANG Yu-zhu1,2, LIN Chen2, JIN Zhi-feng3, FANG Fei4, ZHOU Sheng-lu1   

  1. 1. School of Geographic and Oceanographic Science, Nanjing University, Nanjing 210023, China;
    2. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    3. Jiangsu Institute of Land Surveying and Planning, Nanjing 210024, China;
    4. Yangzhou City Jiangdu District Land Resources Bureau, Yangzhou 225200, China
  • Received:2015-11-13 Revised:2016-01-21 Online:2016-07-20
  • Supported by:
    Supported by the Key Laboratory of the Coastal ZoneExploitation and Protection, Ministry of Land and Resources Open Foundation (NO. 2015CZEPK01)

摘要: 吸附态磷是主要的面源污染物之一,它会导致水域环境质量恶化,是水体富营养化的重要污染源。科学估算吸附态磷污染负荷能够为治理沿海地区非点源污染,保护海洋生态安全提供理论依据。以遥感影像、降雨监测资料等多源数据为基础,综合考虑土壤侵蚀、泥沙输移率、磷富集系数等影响因子,构建吸附态磷负荷估算模型,估算了江苏沿海地区2000~2010年吸附态磷负荷量,分析了不同土地利用背景下吸附态磷负荷的动态变化特征,结果显示:(1) 2000~2010年,江苏沿海地区吸附态磷负荷明显增加,平均吸附态磷负荷模数由105.89 kg/km2·a增长至201.67 kg/km2·a,吸附态磷负荷总量由3284t增长至6255t。(2)10 a间,研究区的吸附态磷负荷热点面积减小,呈现出收敛聚集的态势,但热点区的吸附态磷负荷总量却明显增加,说明研究区内吸附态磷负荷的空间极化现象更为显著。(3)10 a间,各土地利用类型的平均吸附态磷负荷模数都显著增长,不同土地利用背景下吸附态磷负荷总量排序为水田 > 旱地 > 林地 > 草地 > 未利用地 > 园地。研究结果表明,不同土地利用背景下吸附态磷负荷存在显著差异,且不同土地利用类型相互转化时,吸附态磷负荷也随之发生变化,可通过调整土地利用结构,优化景观格局,减少和控制磷污染的发生。

关键词: 沿海地区, 吸附态磷负荷, 土地利用, 动态变化

Abstract: The absorbed phosphorus is one of the major surface contaminants, which not only leads to aquatic environment degradation, but also plays a critical role in water eutrophication. In order to provide theoretical information for agricultural non-point source pollution (ANPS) management and marine ecological safety, the major purpose of this research is to assess the absorbed phosphorus loads under ANPS in the coastal areas. An estimation model of adsorbed phosphorus load was constructed by integrated soil erosion factor, sediment delivery factor and phosphorus enrichment factor together. The model was used to assess the load capacity of adsorbed phosphorus from 2000 to 2010 in the coastal areas of Jiangsu Province using GIS. Finally, the dynamic change features of absorbed phosphorus loads under different land uses were analyzed. The results showed:(1) Absorbed phosphorus load in the coastal areas of Jiangsu province increased significantly from 2000 to 2010, the average phosphorus load modulus increased from 105.89 kg/km2·a to 201.67 kg/km2·a, while the total volume of absorbed phosphorus load increased from 3284 t to 6255 t. (2) During the ten years, the hot areas of absorbed phosphorus load in the research region have narrowed, presenting a state of convergence, while the total amount of absorbed phosphorus load in the hot areas increased significantly, which indicated that the spatial polarization of phosphorus load in the research area was more obvious. (3) Within the ten years, there was a significant growth of the average phosphorus load modulus under different land use backgrounds. According to the total volume of phosphorus load in the same year, different land use types in coastal areas of Jiangsu Province ranked in the following order:paddy field > dry land > forest land > grass land > unutilized land > garden plot. The research results indicated that there was significant difference in the phosphorus load among different land use backgrounds. Therefore, the reasonable land use structure adjustment and landscape pattern optimization is beneficial to preventing and controlling phosphorus pollution.

Key words: coastal areas, absorbed phosphorus load, land use, dynamic change

中图分类号: 

  • k903
[1] A.P.BARTON, M.A.FULLEN, D.J.MITCHELl et al. Effects of soil conservation measures on erosion rates and crop productivity on subtropical Ultisols in Yunnan Province, China[J]. Agriculture, Ecosystems and Environment, 2004, 104:343-357
[2] GRANT R, LAUBEL A, KRONVANG B, et al. Loss of dissolved and particulate phosphorus from arable catckments by subsurface drainage[J]. Water Research, 1996, 30(96):2633-2642
[3] IDE J, HAGA H, CHIWA M, et al. Effects of antecedent rain history on particulate phosphorus loss from a small forested watershed of Japanese cypress (Chamaecyparis obtusa)[J]. Journal of Hydrology, 2008, 352:322-335
[4] 梁斐斐,蒋先军,袁俊吉,等.降雨强度对三峡库区坡耕地土壤氮、磷流失主要形态的影响[J].水土保持学报, 2012, 26(4):81-85[LIANG F F, JIANG X J, YUAN J J, et al. Main features of the loss of nitrogen and phosphorus and rainfall intensity influence in the slope farmland of the three gorges reservoir area[J]. Journal of Soil and Water Conservation, 2012, 26(4):81-85.]
[5] 严慕绥,高云飞,杨胜天,等.土壤侵蚀中吸附态磷流失研究现状与展望[J].水土保持通报, 2009, 29(5):234-237[YAN M S, GAO Y F, YANG S T, et al. Research progress and prospect of soil erosion and absorbed phosphorus loss[J]. Bulletin of Soil and Water Conservation, 2009, 29(5):234-237]
[6] 刘洁,陈晓宏,许振成,等.东江流域非点源污染模拟及时空分布研究[J].地域研究与开发, 2015, 34(2):154-160[LIU J, CHEN X H, XU Z C, et al. Simulation and analysis of temporal and spatial distribution of non-point source pollution in the Dong Jiang River Basin[J]. Areal Research and Development, 2015, 34(2):154-160]
[7] 余进祥,郑博福,刘娅菲,等.鄱阳湖流域泥沙流失及吸附态氮磷输出负荷评估[J].生态学报, 2011, 31(14):3980-3989[YU J X, ZHENG B F, LIU Y F, et al. Evaluation of soil loss and transportation load of adsorption N and P in Poyang Lake watershed[J]. Acta Ecologica Sinica, 2011, 31(14):3980-3989]
[8] 梁常德,龙天渝,李继承,等.三峡库区非点源氮磷负荷研究[J].长江流域资源与环境, 2007, 16(1):26-30[LIANG C D, LONG T Y, LI J C, et al. Importation loads of non-point source nitrogen and phosphorus in the three gorges reservoir[J]. Resources and Environment in the Yangtze Basin, 2007, 16(1):26-30]
[9] 刘腊美,龙天渝,李崇明.三峡水库上游流域非点源颗粒态磷污染负荷研究[J].长江流域资源与环境, 2009, 18(4):320-325[LIU L M, LONG T Y, LI C M. On the non-point source pollution of particulate phosphorus in the upstream watershed of the three gorges reservoir[J]. Resources and Environment in the Yangtze Basin, 2009, 18(4):320-325]
[10] 王而力,王嗣淇,徐颖.沙土不同粒径微团聚体对磷的富集特征[J].环境科学学报, 2013, 33(3):827-834[WANG E L, WANG S Q, XU Y. Enrichment characteristics of phosphorus on micro-aggregates in different sizes of sandy soil[J]. Acta Scientiae Circumstantiae, 2013, 33(3):827-834]
[11] 刘毅,陶勇,万开元,等.丹江口库区坡耕地柑桔园不同覆盖方式下地表径流氮磷流失特征[J].长江流域资源与环境, 2010, 19(11):1340-1344[LIU Y, TAO Y, WAN K Y, et al. Nitrogen and phosphorus loss characteristics on sloping land runoff in citrus orchard with different mulching practices in the Dan Jiangkou reservoir area[J]. Resources and Environment in the Yangtze Basin, 2010, 19(11):1340-1344]
[12] 李婧,李占斌,李鹏,等.模拟降雨条件下植被格局对径流总磷流失特征的影响分析[J].水土保持学报, 2010, 24(4):27-30[LI J, LI Z B, LI P, et al. Effect of vegetation pattern on phosphorus loss character under simulate rainfall condition[J]. Journal of Soil and Water Conservation, 2010, 24(4):27-30]
[13] 陈海洋,滕彦国,王金生,等.晋江流域非点源氮磷负荷及污染源解析[J].农业工程学报, 2012, 28(5):213-219[CHEN H Y, TENG Y G, WANG J S, et al. Pollution load and source apportionment of non-point source nitrogen and phosphorus in Jinjiang River watershed[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5):213-219]
[14] 乔敦.三峡库区紫色土坡耕地吸附态氮磷污染负荷模拟研究[D].重庆:重庆大学, 2012[QIAO D. Study on simulation of absorbed nitrogen and phosphorus quantity of slope farmland with purple in three gorges reservoir area[D]. Chongqing:Chongqing University, 2012]
[15] 龙天渝,刘佳,王海娟等.流域吸附态磷时空分布模型的构建与应用[J].农业工程学报, 2015, 31(3):255-261[LONG T Y, LIU JIA, WANG H J, et al. Modeling spatial-temporal variation of particulate phosphorus at regional scales[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3):255-261]
[16] RENARD K G, FOSTER G R, WEESIES G A, et al. Predicting soil erosion by water:A guide to conservation planning with the Revised Universal Soil Loss Equation. USDA Handbook, 703, 1997
[17] WISCHMEIER W H, MANNERING J V. Relation of soil properties to its erodibility[J]. Soil Science Society of American Proceedings, 1969, 33(01):131-137
[18] WILLIAMS J R, RENARD E P. A new method for assessing erosion's effect on soil productivity. Journal of Soil and Water Conservation, 1983, 38(1):381-383
[19] MC COOL D K, BROWN L C, FOSTER G R, et al. Revised slope steepness factor for the universal soil loss equation. Transactions of the ASAE, 1987, 30(5):1388-1396
[20] LIU B Y, NEARING M A, RISSE L M. Slope gradient effects on soil loss for steep slopes[J]. Transactions of the ASAE, 1994, 37:1835-1840
[21] LIN C Y, LIN W T, CHOU W C. Soil erosion prediction and sediment yield estimation:the Taiwan experience. Soil & Tillage Research, 2002, 68(2):143-152
[22] 陈思旭,杨小唤,肖林林,等.基于RUSLE模型的南方丘陵山区土壤侵蚀研究[J].资源科学, 2014, 36(6):1288-1297[CHEN S X, YANG X H, XIAO L L, et al. Study of soil erosion in the southern hillside area of China based on RUSLE model[J]. Resources Science, 2014, 36(6):1288-1297]
[1] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481-2495.
[2] 高洁芝, 郑华伟, 刘友兆. 基于熵权TOPSIS模型的土地利用多功能性诊断[J]. 长江流域资源与环境, 2018, 27(11): 2496-2504.
[3] 程建, 程久苗, 吴九兴, 徐玉婷. 2000~2010年长江流域土地利用变化与生态系统服务功能变化[J]. 长江流域资源与环境, 2017, 26(06): 894-901.
[4] 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914.
[5] 闵敏, 林晨, 熊俊峰, 沈春竹, 金志丰, 马荣华, 许金朵. 不同土地利用模式下洪泽湖流域非点源颗粒态磷负荷时空演变研究[J]. 长江流域资源与环境, 2017, 26(04): 606-614.
[6] 虎陈霞, 郭旭东, 连纲, 张忠明. 长三角快速城市化地区土地利用变化对生态系统服务价值的影响——以嘉兴市为例[J]. 长江流域资源与环境, 2017, 26(03): 333-340.
[7] 李沁, 沈明, 高永年, 张志飞. 基于改进粒子群算法和元胞自动机的城市扩张模拟——以南京为例[J]. 长江流域资源与环境, 2017, 26(02): 190-197.
[8] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[9] 田柳, 陈江龙, 高金龙. 城市空间结构紧凑与土地利用效率耦合分析——以南京市为例[J]. 长江流域资源与环境, 2017, 26(01): 26-34.
[10] 张范平, 方少文, 周祖昊, 温天福, 张梅红. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境, 2017, 26(01): 126-133.
[11] 戴刘冬, 周锐, 张凤娥, 王新军. 城市土地利用对居民通勤碳排放的影响研究[J]. 长江流域资源与环境, 2016, 25(Z1): 68-77.
[12] 谢莹, 匡鸿海, 吴晶晶, 程玉丝. 基于CLUE-S模型的重庆市渝北区土地利用变化动态模拟[J]. 长江流域资源与环境, 2016, 25(11): 1729-1737.
[13] 刘海, 殷杰, 陈晶, 陈晓玲. 基于遥感影像的丹江口水库水域面积动态变化与原因研究[J]. 长江流域资源与环境, 2016, 25(11): 1759-1766.
[14] 徐磊, 董捷, 张安录. 湖北省土地利用减碳增效系统仿真及结构优化研究[J]. 长江流域资源与环境, 2016, 25(10): 1528-1536.
[15] 毕国华, 杨庆媛, 王兆林, 匡垚瑶, 慕卫东. 丘陵山区都市边缘农村居民点土地利用空间特征分析——以重庆两江新区为例[J]. 长江流域资源与环境, 2016, 25(10): 1555-1565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟爱云, 濮励杰. 区域耕地数量变化与工业化、城市化进程相互关系探讨——以江苏省为例[J]. 长江流域资源与环境, 2008, 17(2): 237 .
[2] 田晓四, 陈 杰,朱 诚,朱同林. 南京市经济增长与工业“三废”污染水平计量模型研究[J]. 长江流域资源与环境, 2007, 16(4): 410 .
[3] 贾泽露,. GIS与SDM集成构建土地定级专家信息系统的研究[J]. 长江流域资源与环境, 2007, 16(3): 323 .
[4] 胥 晓|郑伯川|陈友军. 嘉陵江流域植被景观的空间格局特征[J]. 长江流域资源与环境, 2007, 16(3): 373 .
[5] 谢 洪,钟敦伦,李 泳,韦方强. 长江上游泥石流灾害的特征[J]. 长江流域资源与环境, 2004, 13(1): 94 -99 .
[6] 崔 鸿, 汪 亮,. 略论我国长江渔业资源的法律保护[J]. 长江流域资源与环境, 2006, 15(1): 58 -60 .
[7] 徐慧娟,黎育红,孙燕. 长江宜昌水文站流量、含沙量和悬移质粒度关系[J]. 长江流域资源与环境, 2006, 15(Sup1): 110 -115 .
[8] 张信宝,曹植菁, 艾南山. 溪洛渡水电工程拦沙对三峡水库富营养化潜在影响的初步研究[J]. 长江流域资源与环境, 2009, 18(2): 170 .
[9] 邓志强,任淑花. 长株潭地区经济增长与工业污染变迁的实证研究[J]. 长江流域资源与环境, 2008, 17(4): 517 .
[10] 胡海胜,郑艳萍. 庐山研究的文献分析[J]. 长江流域资源与环境, 2006, 15(Sup1): 66 -71 .