长江流域资源与环境 >> 2016, Vol. 25 >> Issue (12): 1894-1902.doi: 10.11870/cjlyzyyhj201612013

• 生态环境 • 上一篇    下一篇

鄱阳湖区地下水位动态及其与湖水侧向水力联系分析

李云良1, 张小琳2, 赵贵章3, 姚静1, 张奇1,4   

  1. 1. 中国科学院南京地理与湖泊研究所, 流域地理学重点实验室, 江苏 南京 210008;
    2. 中国科学院大学, 北京 100049;
    3. 华北水利水电大学, 河南 郑州 450045;
    4. 江西师范大学, 鄱阳湖湿地与流域研究教育部重点实验室, 江西 南昌 330022
  • 收稿日期:2016-05-04 修回日期:2016-07-19 出版日期:2016-12-20
  • 作者简介:李云良(1983~),男,助理研究员,博士,主要从事湖泊流域系统水文水动力过程研究.E-mail:yunliangli@niglas.ac.cn
  • 基金资助:
    国家重点基础研究发展计划(2012CB417003);国家自然科学基金项目(41401031);江西省重大生态安全问题监控协同创新中心项目(JXS-EW-00);中国科学院流域地理学重点实验室开放基金(WSG2015004)

DYNAMICS OF GROUNDWATER LEVEL AND LATERALLY HYDRAULIC CONNECTION BETWEEN LAKE AND GROUNDWATER IN POYANG LAKE AREA

LI Yun-liang1, ZHANG Xiao-lin2, ZHAO Gui-zhang3, YAO Jing1, ZHANG Qi1,4   

  1. 1. Key Laboratory of Watershed Geographic Science, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. North China University of Water Resources and Electric Power, Zhengzhou 450045, China;
    4. Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
  • Received:2016-05-04 Revised:2016-07-19 Online:2016-12-20
  • Supported by:
    National Basic Research Program of China(2012CB417003);National Natural Science Foundation of China(41401031);Collaborative Innovation Center for Major Ecological Security Issues of Jiangxi Province and Monitoring Implementation(JXS-EW-00);Key Laboratory of Watershed Geographic Science,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences(WSG2015004)

摘要: 基于野外定点监测数据,运用统计学方法解析鄱阳湖区地下水位年内分布特征和动态变化,辨析湖水和典型区地下水之间的侧向水力联系与程度。统计结果表明,不同洲滩地下水埋深变化范围约-8.1~-0.1 m,洲滩地下水和湖水在6~9月份保持完全水力连通。湖水位和洲滩地下水位动态变化呈现高度一致性,表明了洲滩地下水和湖水具有密切的侧向水力联系。湖岸带不同典型区的地下水埋深变化范围介于-10~-2.2 m。湖岸带地下水位与湖水位并不具有日时间尺度变化上的高度一致性,但两者却很好呈现了月尺度上的较好一致性,表明了湖岸带地下水与湖水之间具有一定的相互关系和水力联系。小波分析得出,湖水位和洲滩、湖岸带不同典型区的地下水位均在60 d尺度的周期上存在着极大可能的显著相关,总体上两者呈正相关关系变化,表明湖水和洲滩地下水具有密切的水力联系,但与湖岸带地下水的侧向水力联系可能体现在个别典型时段。为今后鄱阳湖地下水方面的相关研究奠定基础,也为鄱阳湖湿地生态环境保护、水资源评价等方面提供科学依据和参考。

关键词: 湖水位, 地下水位, 水力联系, 小波分析, 鄱阳湖

Abstract: Study of the interactions and exchange fluxes between groundwater and lake water is an important prerequisite for understanding and preserving groundwater-lake water ecosystems. The objectives of this paper are to combine observed lake water level and groundwater level (during 2014) and statistical methods to analyze the dynamics of groundwater level response to the lake water level changes around Poyang Lake. Additionally, we further explored the laterally hydraulic connection between lake water and groundwater. Statistical results showed that the groundwater depth varies from -8.1 to -0.1 m in different delta wetlands of the Poyang Lake, and the lake water and groundwater had a fully hydraulic connection during the high lake water level periods (June-September). In addition, the variations of groundwater level in the typical delta wetlands were similar to those of the lake water level, suggesting a close hydraulic connection between the two. Statistical results also showed that the groundwater depth has a range of -10~-2.2 m in different lakeshores around the lake. Although the groundwater level in different lakeshores and the lake water level are obviously different at a daily scale in terms of the temporal dynamics, they appear to exhibit similar variation pattern at a monthly scale. The wavelet analysis demonstrated that both the lake water level and the groundwater level in different areas were of obvious 60 days significant oscillation periods with the positive correlations. This result indicates that, in generally, Poyang Lake water has a close hydraulic connection with the groundwater of different delta wetlands, but a relatively weak hydraulic connection between the two depended on the local water regime. The outcomes of this study will not only help improve our understanding of groundwater-lake water dynamics in the Poyang Lake area, but also can provide scientific basis for future groundwater management and water resources assessment.

Key words: lake water level, groundwater level, hydraulic connection, wavelet analysis, Poyang Lake

中图分类号: 

  • P641.6
[1] EDWARDSON K J, BOWDEN W B, DAHM C, et al. The hydraulic characteristics and geochemistry of hyporheic and parafluvial zones in Arctic tundra streams, north slope, Alaska[J]. Advances in Water Resources, 2003, 26(9):907-923.
[2] SALEHIN M, PACKMAN A I, PARADIS M. Hyporheic exchange with heterogeneous streambeds:laboratory experiments and modeling[J]. Water Resources Research, 2004, 40(11):W11504, doi:10.1029/2003WR002567.
[3] 滕彦国, 左锐, 王金生. 地表水-地下水的交错带及其生态功能[J]. 地球与环境, 2007, 35(1):1-8.[TENG Y G, ZUO R, WANG J S. Hyporheic zone of groundwater and surface water and its ecological function[J]. Earth and Environment, 2007, 35(1):1-8.]
[4] URBANO L D, PERSON M, HANOR J. Groundwater-lake interactions in semi-arid environments[J]. Journal of Geochemical Exploration, 2000, 69-70:423-427.
[5] 李均力, 胡汝骥, 黄勇, 等. 1964-2014年柴窝堡湖面积的时序变化及驱动因素[J]. 干旱区研究, 2015, 32(3):417-427.[LI J L, HU R J, HUANG Y, et al. Spatial-temporal characteristics of Chaiwopu Lake area change and its driving factors from 1964 to 2014[J]. Arid Zone Research, 2015, 32(3):417-427.]
[6] ECKHARDT K, ULBRICH U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range[J]. Journal of Hydrology, 2003, 284(1/4):244-252.
[7] MEIXNER T, MANNING A H, STONESTROM D A, et al. Implications of projected climate change for groundwater recharge in the western United States[J]. Journal of Hydrology, 2016, 534:124-138.
[8] SHANKMAN D, KEIM B D, SONG J. Flood frequency in China's Poyang Lake region:trends and teleconnections[J]. International Journal of Climatology, 2006, 26(9):1255-1266.
[9] KANAI Y, UETA M, GERMOGENOV N, et al. Migration routes and important resting areas of Siberian cranes (Grus leucogeranus) between northeastern Siberia and China as revealed by satellite tracking[J]. Biological Conservation, 2002, 106(3):339-346.
[10] 许秀丽, 张奇, 李云良, 等. 鄱阳湖典型洲滩湿地土壤含水量和地下水位年内变化特征[J]. 湖泊科学, 2014, 26(2):260-268.[XU X L, ZHANG Q, LI Y L, et al. Inner-annual variation of soil water content and groundwater level in a typical islet wetland of Lake Poyang[J]. Journal of Lake Sciences, 2014, 26(2):260-268.]
[11] 陈建生, 彭青, 詹泸成, 等. 鄱阳湖流域河水、湖水及地下水同位素特征分析[J]. 水资源保护, 2015, 31(4):1-7.[CHEN J S, PENG Q, ZHAN L C, et al. Analysis of isotopes characteristics of river water, lake water and groundwater in Poyang Lake Basin[J]. Water Resources Protection, 2015, 31(4):1-7.]
[12] LANDON M K, RUS D L, HARVEY F E. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds[J]. Ground Water, 2001, 39(6):870-885.
[13] CHRISTENSEN S, RASMUSSEN K R, MOLLER K. Prediction of regional ground water flow to streams[J]. Ground Water, 1998, 36(2):351-360.
[14] HARE D K, BRIGGS M A, ROSENBERRY D O, et al. A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water[J]. Journal of Hydrology, 2015, 530:153-166.
[15] KARAN S, KIDMOSE J, ENGESGAARD P, et al. Role of a groundwater-lake interface in controlling seepage of water and nitrate[J]. Journal of Hydrology, 2014, 517:791-802.
[16] CONSTANTZ J, COX M H, SU GW. Comparison of heat and bromide as ground water tracers near streams[J]. Ground Water, 2003, 41(5):647-656.
[17] 陈崇希, 裴顺平, 王逊. 非完整河的数值模拟方法及建模中的若干问题——读"数值模拟方法在评价地下水资源时区内河流的处理方法"一文随笔[J]. 勘察科学技术, 1999(4):3-6.[CHEN C X, PEI S P, WANG X. Numerical simulation method of partial penetration river and some problems in the establishment of models-an informal essay after reading "treatment of regional river during evaluation of groundwater resources by numerical simulation"[J]. Site Investigation Science and Technology, 1999(4):3-6.]
[18] PARKIN G, BIRKINSHAW S J, YOUNGER P L, et al. A numerical modelling and neural network approach to estimate the impact of groundwater abstractions on river flows[J]. Journal of Hydrology, 2007, 339(1/2):15-28.
[19] 胡春华, 童乐, 万齐远, 等. 环鄱阳湖浅层地下水水化学特征的时空变化[J]. 环境化学, 2013, 32(6):974-979.[HU C H, TONG L, WAN Q Y, et al. Spatial and temporal variation of shallow groundwater chemical characteristics around Poyang Lake[J]. Environmental Chemistry, 2013, 32(6):974-979.]
[20] 曾昭华. 江西省鄱阳湖地区地下水中SiO2的分布特征及开发评价[J]. 地质与勘探, 1999, 35(2):37-40.[ZENG Z H. The distribution feature and development assessment of SiO2 in groundwater in the area of Poyang Lake, Jiangxi Province[J]. Geology and Prospecting, 1999, 35(2):37-40.]
[21] BOX G E P, JENKINS G M, REINSEL G C. Time series analysis:forecasting and control[M]. Englewood Cliffs, New Jersey, USA:Prentice Hall Inc., 1994.
[22] FOUFOULA-GEORGIOU E, KUMAR P. Wavelets in geophysics[M]. San Diego:Academic Press, 1994.
[23] GRINSTED A, MOORE J C, JEVREJEVA S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5/6):561-566.
[24] TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78.
[25] TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78.
[26] TORRENCE C, WEBSTER P J. Interdecadal changes in the ENSO-monsoon system[J]. Journal of Climate, 1999, 12(8):2679-2690.
[1] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[2] 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729.
[3] 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737.
[4] 侯立春, 林振山, 琚胜利, 赖正清, 吴连霞, 张志荣. 环鄱阳湖旅游圈旅游经济联系与区域发展策略[J]. 长江流域资源与环境, 2017, 26(04): 508-518.
[5] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[6] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[7] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[8] 戴雪, 何征, 万荣荣, 杨桂山. 近35 a长江中游大型通江湖泊季节性水情变化规律研究[J]. 长江流域资源与环境, 2017, 26(01): 118-125.
[9] 张范平, 方少文, 周祖昊, 温天福, 张梅红. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境, 2017, 26(01): 126-133.
[10] 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16.
[11] 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(Z1): 95-102.
[12] 张钊, 李占海, 张国安, 王智罡, 姚俊. 长江口南槽中段枯季水沙输运特征研究[J]. 长江流域资源与环境, 2016, 25(12): 1832-1841.
[13] 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758.
[14] 戴雪, 杨桂山, 万荣荣, 李冰, 王晓龙. 鄱阳湖洲滩植被健康状态评价及其典型不健康年水文条件分析[J]. 长江流域资源与环境, 2016, 25(09): 1395-1402.
[15] 李云良, 许秀丽, 赵贵章, 姚静, 张奇. 鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J]. 长江流域资源与环境, 2016, 25(08): 1200-1208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[4] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[5] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[6] 胡大伟,卞新民,许 泉. 基于ANN的土壤重金属分布和污染评价研究[J]. 长江流域资源与环境, 2006, 15(4): 475 -479 .
[7] 张洁| 张志斌| 孙欣欣. 云南省矿产资源开发利用中的主要环境问题[J]. 长江流域资源与环境, 2006, 15(Sup1): 61 -65 .
[8] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .
[9] 邹小兵,曾 婷,TRINA MACKIE,肖尚友,夏之宁. 嘉陵江下游江段春季浮游藻类特征及污染现状[J]. 长江流域资源与环境, 2008, 17(4): 612 .
[10] 王书国,段学军,姚士谋. 长江三角洲地区人口空间演变特征及动力机制[J]. 长江流域资源与环境, 2007, 16(4): 405 .