长江流域资源与环境 >> 2015, Vol. 24 >> Issue (07): 1150-1156.doi: 10.11870/cjlyzyyhj201507010

• 生态环境 • 上一篇    下一篇

西苕溪干流水体、悬浮物和表层沉积物中营养盐分布特征与水质评价

李正阳, 袁旭音, 王欢, 许海燕, 陈海龙, 鲁朝朋   

  1. 河海大学环境学院, 江苏 南京 210098
  • 收稿日期:2014-07-21 修回日期:2014-11-04 出版日期:2015-07-20
  • 作者简介:李正阳(1989~),男,硕士研究生,主要从事环境地球化学方面研究.E-mail:lizhengyang1020@163.com
  • 基金资助:
    国家自然科学基金项目(41372354);科技部国际科技合作专项(2012DFA60830)

DISTRIBUTION AND EVALUATION OF NUTRIENTS FROM WATER, SUSPENDED SEDIMENT AND SURFACE SEDIMENT IN THE MAIN STREAM OF THE XITIAOXI RIVER

LI Zheng-yang, YUAN Xu-yin, WANG Huan, XU Hai-yan, CHEN Hai-long, LU Chao-peng   

  1. College of Environment Hohai University, Nanjing 210098, China
  • Received:2014-07-21 Revised:2014-11-04 Online:2015-07-20
  • Contact: 袁旭音,E-mail:yxy_hjy@hhu.edu.cn E-mail:yxy_hjy@hhu.edu.cn

摘要: 了解不同介质的营养盐分布可以全面掌握河流的环境现状。为了调查西苕溪干流的营养盐分布特征和水质现状,沿着干流采集了11个点位的水体、悬浮物和表层沉积物样品,并对水体、悬浮物和表层沉积物中的营养盐特征进行了分析,拟为苕溪流域的水污染防治提供基础数据。研究表明:整个西苕溪干流,水体和沉积物中总氮(TN)和总磷(TP)浓度均存在丰水期明显高于枯水期的季节变化特征,水体中总氮的浓度均超出地表水环境质量Ⅴ类的标准,显示氮污染是西苕溪流域的特点。相关性分析结果表明,悬浮物中的TN和有机质(OM)呈极显著性正相关(r=0.974,p<0.01);水体中的TN和悬浮物的各营养盐指标之间的相关性均达到了极显著水平,但沉积物营养盐指标与水体的TN和TP相关性不明显,显示沉积物并不能很好反映流域水质的现状。

关键词: 营养盐, 水体, 悬浮物, 沉积物, 西苕溪

Abstract: Understanding the distributions of nutrients in different medium can help to fully grasp the current situation of river environments. To investigate the distribution characteristics, pollution degree and relationships of nutrients in the main stream of the Xitiaoxi River, water, suspended sediment and surface sediment samples were recently taken from 11 sites along this River. These data can help us to recognize the nutritional levels of diverse sections in the mainstream. The results showed that, the concentrations of TN and TP in the waters were higher in the wet season than in the dry season from upper reaches to lower reaches of the Xitiaoxi River. The contents of TP showed they were worse than Grade Ⅲ level of National Environment Quality Standard for Surface Water in half of total sites. In contrast, the concentrations of TN showed that they were worse than Grade V of the surface-water standard (GB3838-2002). NH3-N in the wet and dry seasons all reached level Ⅱ and Ⅲ, respectively, in the middle and lower reaches. The overall NH3-N pollution showed the pattern of lower reaches> middle reaches> upper reaches. Therefore, compared to phosphorus pollution, nitrogen pollution of water was more serious in the Xitiaoxi River. The contents of TN in suspended matter basically increased with an order of the upper reaches, lower reaches, and middle reaches from high to low, and the contents of TP showed an order of the upper reaches, middle reaches, and lower reaches. The contents of organic matter of upper reaches were higher than those of lower reaches and middle reaches. The maximum of both TN and organic matter appeared in XTX1 of upper reaches, which indicated a high organic matter and nitrogen values in forested lands. Inorganic phosphorus took up a higher proportion than organic phosphorus in sediment TP, which indicated that inorganic phosphorus was the main form of phosphorus forms. Although inorganic nitrogen accounted for a small proportion of TN, they can indicate a good water quality. Results from statistical correlation analyses showed that TN content in suspended sediment was obviously positively correlated with OM (r =0.974, p<0.01). TN of all sites in waters were correlated with the nutrients in suspended sediment. No significant relationship was found between nutrient in sediment and TN, TP in water, which indicated that sediment could not reflect the status of water quality in basin well. Therefore, control and treatment of water pollution in Xitiaoxi River should focus on abatement of suspended matter in water.

Key words: nutrient, water, suspended sediment, sediment, Xitiaoxi River

中图分类号: 

  • X522
[1] STOW C A,BORSUK M E,STANLEY D W.Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River,North Carolina[J].Water Research,2001,35(6):1489-1499.
[2] BOWES M J,HILTON J,IRONS G P,et al.The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England:Implications for nutrient management[J].Science of the Total Environment,2005,344(1):67-81.
[3] 莫登奎,严恩萍,洪奕丰,等.基于Hyperion的东洞庭湖水质参数空间分异规律[J].中国农学通报,2013,29(5):192-198.
[4] FURUMAI H,KONDO T,OHGAKI S.Phosphorus exchange kinetics and exchangeable phosphorus forms in sediments[J].Water Research,1989,23(6):685-691.
[5] GONSIORCZYK T,CASPER P,KOSCHEL R.Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany)[J].Water Science and Technology,1998,37(3):51-58.
[6] HAVENS K,FUKUSHIMA T,XIE P,et al.Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan),Donghu (PR China),and Okeechobee (USA)[J].Environmental Pollution,2001,111(2):263-272.
[7] KAISERLI A,VOUTSA D,SAMARA C.Phosphorus fractionation in lake sediments-Lakes Volvi and Koronia,N.Greece[J].Chemosphere,2002,46(8):1147-1155.
[8] RYTHER J H,DUNSTAN W M.Nitrogen,phosphorus,and eutrophication in the coastal marine environment[J].Science,1971,171(3975):1008-1013.
[9] 金黎明,张 奇,李恒鹏,等.西苕溪流域非点源氮污染特征[J].农业环境科学学报,2011,30(7):1385-1390.
[10] 于兴修,杨桂山,欧维新.非点源污染对太湖上游西苕溪流域水环境的影响[J].湖泊科学,2003,15(1):49-55.
[11] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
[12] 复 盛,国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
[13] QUIR S R.The relationship between nitrate and ammonia concentrations in the pelagic zone of lakes[J].Limnetica,2003,22(1-2):37-50.
[14] 高常军.流域土地利用对苕溪水体C、N、P输出的影响[D].北京:中国林业科学研究院博士学位论文,2013.
[15] 姜 磊.苕溪流域非点源水污染预测及总量分配方法研究[D].杭州:浙江大学硕士学位论文,2011.
[16] 孙晓杭,张 昱,杨 敏,等.太湖悬浮物磷的形态分布特征[J].安全与环境学报,2005,5(4):19-22.
[17] 刘 峰,高云芳,王立欣,等.水域沉积物氮磷赋存形态和分布的研究进展[J].水生态学杂志,2011,32(4):137-144.
[18] 金相灿,姜 霞,王 琦,等.太湖梅梁湾沉积物中磷吸附/解吸平衡特征的季节性变化[J].环境科学学报,2008,28(1):24-30.
[19] 康丽娟.淀山湖沉积物碳,氮,磷分布特征与评价[J].长江流域资源与环境,2012,21(Z1):105-110.
[20] 钱君龙,陈如松.湖泊沉积研究中的一种定量估算陆源有机碳的方法[J].科学通报,1997,42(15):1655-1668.
[21] MEYERS P A,ISHIWATARI R.Lacustrine organic geochemistry—an overview of indicators of organic matter sources and diagenesis in lake sediments[J].Organic Geochemistry,1993,20(7):867-900.
[22] 李绪录,周毅频,夏华永.大鹏湾表层沉积物中碳,氮,磷的多年调查结果和有机质来源分析[J].环境科学学报,2012,32(5):1113-1119.
[23] KATSAOUNOS C Z,GIOKAS D L,LEONARDOS I D,et al.Speciation of phosphorus fractionation in river sediments by explanatory data analysis[J].Water Research,2007,41(2):406-418.
[24] 章婷曦,王晓蓉,金相灿.太湖不同营养水平湖区沉积物中磷形态的分布特征[J].农业环境科学学报,2007,26(4):1207-1213.
[25] RUBAN V,L PEZ-S NCHEZ J,PARDO P,et al.Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-A synthesis of recent works[J].Fresenius' journal of analytical chemistry,2001,370(2-3):224-228.
[26] 林植青,郑建禄,徐梅春,等.珠江广州至虎门段水体中的营养盐[J].热带海洋,1985,4(2):52-59.
[27] 逄 勇,韩 涛,李一平,等.太湖底泥营养要素动态释放模拟和模型计算[J].环境科学,2007,28(9):1960-1964.
[28] WANG Y,ZHANG X,HUANG C.Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau,China[J].Geoderma,2009,150(1):141-149.
[29] SØNDERGAARD M,JENSEN J P,JEPPESEN E.Role of sediment and internal loading of phosphorus in shallow lakes[J].Hydrobiologia,2003,506(1-3):135-145.
[30] 袁和忠,沈 吉,刘恩峰,等.太湖水体及表层沉积物磷空间分布特征及差异性分析[J].环境科学,2010,31(4):954-960.
[1] 沈胤胤, 胡雷地, 姜泉良, 江俊武, 吴亚林, 黄涛, 杨浩, 宋挺, 黄昌春. 基于SWAT模型的太湖西北部30a来氮磷的输出特征[J]. 长江流域资源与环境, 2017, 26(06): 902-914.
[2] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[3] 张玉柱, 黄春长, 庞奖励, 查小春, 周亚利, 石彬楠, 李晓刚. 基于HEC-RAS模型的汉江上游旬阳西段超长尺度古水文演化重建[J]. 长江流域资源与环境, 2017, 26(05): 755-764.
[4] 赵登忠, 肖潇, 汪朝辉, 谭德宝, 陈永柏. 水布垭水库水体碳时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 304-313.
[5] 陈星, 张平究, 包先明, 张璐璐, 张海霞, 韩燕青. 改良剂对湿地土壤团聚体及抗悬浮能力的影响试验[J]. 长江流域资源与环境, 2016, 25(12): 1903-1909.
[6] 朱强, 杨世伦, 孟翊, 杨海飞, 吴创收, 史本伟. 近期长江口南港河槽沉积地貌变异及其可能原因[J]. 长江流域资源与环境, 2016, 25(04): 560-566.
[7] 赵丽, 姜霞, 王雯雯, 王书航, 常乐, 陈俊伊. 丹江口水库表层沉积物不同形态氮的赋存特征及其生物有效性[J]. 长江流域资源与环境, 2016, 25(04): 630-637.
[8] 赵敏, 张丽旭. 长江口海域表层沉积物环境质量的综合评价[J]. 长江流域资源与环境, 2016, 25(02): 284-291.
[9] 陆亚萍, 姚敏. 龙感湖表层沉积硅藻探究[J]. 长江流域资源与环境, 2015, 24(12): 2047-2053.
[10] 邵佳丽, 郑伟, 刘诚. 卫星遥感洞庭湖主汛期水体时空变化特征及影响因子分析[J]. 长江流域资源与环境, 2015, 24(08): 1315-1321.
[11] 蒋豫, 刘新, 高俊峰, 蔡永久. 江苏省浅水湖泊表层沉积物中重金属污染特征及其风险评价[J]. 长江流域资源与环境, 2015, 24(07): 1157-1162.
[12] 况润元, 罗卫, 张萌. 基于实测数据与遥感影像的鄱阳湖水体光学分类[J]. 长江流域资源与环境, 2015, 24(05): 773-780.
[13] 弓晓峰, 孙明哲, 陈春丽, 王佳佳, 刘春英, 杨菊云, 向洪锐, 方亮. 盲数优化地积累模型评价长江中下游湖泊沉积物重金属污染[J]. 长江流域资源与环境, 2015, 24(05): 824-831.
[14] 孙婷婷, 唐涛, 申恒伦, 张长群, 孙美琴, 李斌, 蔡庆华. 香溪河流域不同介质中碳、氮、磷的分布特征及相关性研究[J]. 长江流域资源与环境, 2015, 24(05): 853-859.
[15] 凌成星, 张怀清, 林 辉. 利用混合水体指数模型(CIWI)提取滨海湿地水体的信息[J]. 长江流域资源与环境, 2010, 19(2): 152-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 曾慧卿. 近40年气候变化对江西自然植被净第一性生产力的影响[J]. 长江流域资源与环境, 2008, 17(2): 227 .
[3] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[4] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[5] 徐祖信,叶建锋. 前置库技术在水库水源地面源污染控制中的应用[J]. 长江流域资源与环境, 2005, 14(6): 792 -795 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 张青青,张世熔,李婷,张林,林晓利,. 基于多元数据的景观格局演变及其影响因素——以流沙河流域宜东段为例[J]. 长江流域资源与环境, 2006, 15(Sup1): 125 -130 .
[9] 周国忠,冯海霞. 浙江省旅游资源地区差异研究[J]. 长江流域资源与环境, 2006, 15(2): 157 -163 .
[10] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .