长江流域资源与环境 >> 2016, Vol. 25 >> Issue (09): 1368-1374.doi: 10.11870/cjlyzyyhj201609007

• 生态环境 • 上一篇    下一篇

常州市大气PM2.5中水溶性离子组成及来源

滕加泉1, 程钟1, 梁丹妮2, 马咸2, 吴建会2   

  1. 1. 常州市环境监测中心, 江苏 常州 213000;
    2. 南开大学环境科学与工程学院, 国家环境保护城市空气颗粒物污染防治重点实验室, 天津 300071
  • 收稿日期:2016-01-04 修回日期:2016-04-11 出版日期:2016-09-20
  • 通讯作者: 吴建会 E-mail:envwujh@nankai.edu.cn
  • 作者简介:滕加泉(1971~),男,高级工程师,主要从事环境规划和环境监测等工作.
  • 基金资助:
    国家自然科学基金(21407081)

CHARACTERISTICS AND SOURCES ANALYSIS OF WATER-SOLUBLE IONS IN PM2.5 IN CHANGZHOU

TENG Jia-quan1, CHENG Zhong1, LIANG Dan-ni2, MA Xian2, WU Jian-hui2   

  1. 1. Changzhou Environmental Monitoring Center, Changzhou 213000, China;
    2. State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering. Nankai University, Tianjin 300071, China
  • Received:2016-01-04 Revised:2016-04-11 Online:2016-09-20
  • Supported by:
    the National Natural Science Foundation of China (21407081)

摘要: 于2013年3月~2014年4月采集常州市郊区、工业区、居民区和背景点的春季、秋季大气PM2.5样品,用离子色谱法分析其中水溶性离子成分,对其组成、分布特征及来源等进行研究。结果表明:SO42-、NO3-和NH4+是常州市PM2.5中的主要水溶性离子,3种离子在PM2.5中占比为18%~33%。不同功能区之间水溶性离子的占比和差异较小,常州背景点可能受到周边城市污染输送的影响。在PM2.5中,NH4+与SO42-和NO3-主要以(NH42SO4和NH4NO3存在;硫转化率(SOR)和氮转化率(NOR)是衡量二次无机粒子转化的有效手段,常州市各功能区的SOR均大于NOR;春季SOR > 0.25,NOR > 0.1,满足发生强烈光化学氧化反应的条件。

关键词: PM2.5, 常州, 水溶性离子, 特征, 来源

Abstract: Atmospheric PM2.5 samples were collected from suburban areas, industrial areas, residential areas and background points in the Changzhou City from March 2013 to April 2014 during spring and autumn. Ion chromatography was used to analyze the composition, distribution characteristics and sources of water-soluble ions in PM2.5. The results indicated that SO42-, NO3-and NH4+ were the main components of water-soluble ions in PM2.5, contributing to 18%-33% of the mass of PM2.5. The proportion and concentration difference of water-soluble ions between different functional areas was small, which showed that background points in Changzhou can be affected by pollutants transferred from surrounding cities. NH4+, SO42- and NO3 mainly existed in PM2.5 as (NH4)2SO4 and NH4NO3. SOR and NOR are effective methods for evaluating the transformation ratio of secondary inorganic particles. The value of SOR was higher than that of NOR in all areas. In spring, the value of SOR was greater than 0.25, the value of NOR was greater than 0.1, which met the strong photochemical oxidation reaction conditions.

Key words: PM2.5, Changzhou, water-soluble ions, characteristics, sources

中图分类号: 

  • X513
[1] 张人禾, 李强, 张若楠. 2013年1月中国东部持续性强雾霾天气产生的气象条件分析[J]. 中国科学:地球科学, 2014, 44(1):27-36. [ZHANG R H, LI Q, ZHANG R N. Meteorological conditions for the persistent severe fog and haze event over eastern China in January 2013[J]. Science China:Earth Sciences, 2014, 57(1):27-36.]
[2] 赵海瑞, 秦福兴, 陈齐, 等. 水质站网规划研究中几个问题的探讨[J]. 水文, 1995(1):7-11. [ZHAO H R, QIN F X, CHEN Q, et al. Discussion on the problems in the water quality network planning[J]. Hydrology, 1995(1):7-11.]
[3] VERMA S, BOUCHER O, UPADHYAYA H C, et al. Sulfate aerosols forcing:an estimate using a three-dimensional interactive chemistry scheme[J]. Atmospheric Environment, 2006, 40(40):7953-7962.
[4] PENNER J E, CHARLSON R J, SCHWARTZ S E, et al. Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols[J]. Bulletin of the American Meteorological Society, 1994, 75(3):375-400.
[5] ALPERT P, KAUFMAN Y J, SHAYEL Y, et al. Quantification of dust-forced heating of the lower troposphere[J]. Nature, 1998, 395(6700):367-370.
[6] HAYWOOD J, BUSHM, ABEL S, et al. Prediction of visibility and aerosol within the operational Met Office Unified Model Ⅱ:validation of model performance using observational data[J]. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1817-1832.
[7] MKOMA S L, WANG W, MAENHAUT W. Seasonal variation of water-soluble inorganic species in the coarse and fine atmospheric aerosols at Dar es Salaam, Tanzania[J]. Nuclear Instruments and Methods in Physics Research Section B, 2009, 267(17):2897-2902.
[8] 刀谞, 张霖琳, 王超, 等. 京津冀冬季与夏季PM2.5/PM10及其水溶性离子组分区域性污染特征分析[J]. 环境化学, 2015, 34(1):60-69. [DAO X, ZHANG L L, WANG C, et al. Characteristics of mass and ionic compounds of atmospheric particles in winter and summer of Beijing-Tianjin-Hebei area, China[J]. Environmental Chemistry, 2015, 34(1):60-69.]
[9] 赵金平, 张福旺, 徐亚, 等. 滨海城市不同粒径大气颗粒物中水溶性离子的分布特征[J]. 生态环境学报, 2010, 19(2):300-306. [ZHAO J P, ZHANG F W, XU Y, et al. Distribution characteristics of water-soluble ions in atmospheric particles with different sizes in coastal city[J]. Ecology and Environmental Sciences, 2010, 19(2):300-306.]
[10] 刘子锐, 王跃思, 刘全, 等. 鼎湖山秋季大气细粒子及其二次无机组分的污染特征及来源[J]. 环境科学, 2011, 32(11):3160-3166. [LIU Z R, WANG Y S, LIU Q, et al. Pollution characteristics and source of the atmospheric fine particles and secondary inorganic compounds at mount Dinghu in autumn season[J]. Environmental Science, 2011, 32(11):3160-3166.]
[11] XIAO J H, LIU Z R, ZHANG J K, et al. Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing[J]. Atmospheric Research, 2016, 168:70-79.
[12] MENG C C, WANG L T, ZHANG F F, et al. Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China[J]. Atmospheric Research, 2016, 171:133-146.
[13] WANG H B, SHOOTER D. Coarse-fine and day-night differences of water-soluble ions in atmospheric aerosols collected in Christchurch and Auckland, New Zealand[J]. Atmospheric Environment, 2002, 36(21):3519-3529.
[14] WANG X, PU W, ZHANG X Y, et al. Water-soluble ions and trace elements in surface snow and their potential source regions across northeastern China[J]. Atmospheric Environment, 2015, 114:57-65.
[15] 杨彦, 于云江, 魏伟伟, 等. 常州市浅层地下水重金属污染对城区、城郊居民健康风险评价[J]. 环境化学, 2013, 32(2):202-211. [YANG Y, YU Y J, WEI W W, et al. Health risk assessment of heavy metals in shallow groundwater in urban and suburban areas of Changzhou[J]. Environmental Chemistry, 2013, 32(2):202-211.]
[16] 孔春霞, 郭胜利, 汤莉莉. 南京气溶胶水溶性离子粒径分布及其随高度的变化[J]. 大气科学学报, 2010, 33(6):757-761. [KONG C X, GUO S L, TANG L L. Size distribution of water-soluble ions in aerosol and its variation with height in Nanjing[J]. Transactions of Atmospheric Sciences, 2010, 33(6):757-761.]
[17] 许明君, 王月华, 汤莉莉, 等. 南京城区与郊区秋季大气PM10中水溶性离子的特征研究[J]. 环境工程, 2012, 30(5):108-113. [XU M J, WANG Y H, TANG L L, et al. Study on characteristics of water-soluble ions in PM10 in autumn in Nanjing[J]. Environmental Engineering, 2012, 30(5):108-113.]
[18] 陈诚, 陈辰, 汤莉莉, 等. 江苏沿江城市PM10和PM2.5中水溶性离子特征及来源分析[J]. 环境化学, 2014, 33(12):2123-2135. [CHEN C, CHEN C, TANG L L, et al. Characteristics and sources analysis of water-soluble ions in PM10 and PM2.5 in cities along the Yangtze River of Jiangsu Province[J]. Environmental Chemistry, 2014, 33(12):2123-2135.]
[19] GROSJEAN D, SEINFELD J H. Parameterization of the formation potential of secondary organic aerosols[J]. Atmospheric Environment, 1989, 23(8):1733-1747.
[20] OHTA D, OKITA D. A chemical characterization of atmospheric aerosol in Sapporo[J]. Atmospheric Environment. Part A. General Topics, 1990, 24(4):815-822.
[21] GROSJEAN D, FRIEDLANDER S K. Gas-particle distribution factors for organic and other pollutants in the Los Angeles atmosphere[J]. Journal of the Air Pollution Control Association, 1975, 25(10):1038-1044.
[22] KADOWAKI S. On the nature of Atmospheric oxidation processes of SO2 to sulfate and of NO2 to nitrate on the basis of diurnal variations of sulfate, nitrate, and other pollutants in an urban area[J]. Environmental Science & Technology, 1986, 20(12):1249-1253.
[23] 杨起超, 曾立民, 唐静玥, 等. 无锡冬季和春季大气中细粒子化学组分及其特性分析[J]. 环境化学, 2014, 33(9):1501-1513. [YANG Q C, ZENG L M, TANG J Y, et al. Characteristic analysis of chemical species in atmospheric fine particles in Wuxi during winter & spring sampling campaigns[J]. Environmental Chemistry, 2014, 33(9):1501-1513.]
[24] 刘刚, 滕卫林, 刘卫艳, 等. 杭州市大气PM2.5污染水平及水溶性离子组成[J]. 中国卫生检验杂志, 2007, 17(3):407-410, 418. [LIU G, TENG W L, LIU W Y, et al. Pollution levels and water-soluble ions of PM2.5 in atmosphere in Hangzhou[J]. Chinese Journal of Health Laboratory Technology, 2007, 17(3):407-410, 418.]
[25] 汤莉莉, 汤蕾, 花艳, 等. 苏南三市秋冬季PM2.5中水溶性离子和元素特征及源解析[J]. 大气科学学报, 2015, 38(5):686-693. [TANG L L, TANG L, HUA Y, et al. Characteristics and source apportionment of water-soluble ions and elements in PM2.5 in three cities of South Jiangsu in autumn and winter[J]. Transactions of Atmospheric Sciences, 2005, 38(5):686-693.]
[26] 杨懂艳, 刘保献, 张大伟, 等. 2012~2013年间北京市PM2.5中水溶性离子时空分布规律及相关性分析[J]. 环境科学, 2015, 36(3):768-773. [YANG D Y, LIU B X, ZHANG D W, et al. Correlation, seasonal and temporal variation of water-soluble ions of PM2.5 in Beijing during 2012-2013[J]. Environmental Science, 2015, 36(3):768-773.]
[27] 杨素霞, 曹军骥, 沈振兴, 等. 西安冬、夏季PM2.5中水溶性无机离子的变化特征[J]. 环境化学, 2012, 31(8):1179-1188. [YANG S X, CAO J J, SHEN Z X, et al. Variations of water-soluble ions in PM2.5 at Xi'an between summer and winter[J]. Environmental Chemistry, 2012, 31(8):1179-1188.]
[28] 陶俊, 张仁健, 董林, 等. 夏季广州城区细颗粒物PM2.5和PM1.0中水溶性无机离子特征[J]. 环境科学, 2010, 31(7):1417-1424. [TAO J, ZHANG R J, DONG L, et al. Characterization of Water-soluble Inorganic Ions in PM2.5 and PM1.0 in Summer in Guangzhou[J]. Environmental Science, 2010, 31(7):1417-1424.]
[29] 张智胜, 陶俊, 谢绍东, 等. 成都城区PM2.5季节污染特征及来源解析[J]. 环境科学学报, 2013, 33(11):2947-2952. [ZHANG Z S, TAO J, XIE S D, et al. Seasonal variations and source apportionment of PM2.5 at urban area of Chengdu[J]. Acta Scientiae Circumstantiae, 2013, 33(11):2947-2952.]
[30] 薛国强, 朱彬, 王红磊. 南京市大气颗粒物中水溶性离子的粒径分布和来源解析[J]. 环境科学, 2014, 35(5):1633-1643. [XUE G Q, ZHU B, WANG H L. Size distributions and source apportionment of soluble ions in aerosol in Nanjing[J]. Environmental Science, 2014, 35(5):1633-1643.]
[31] 邓利群, 李红, 柴发合, 等. 北京市东北城区冬季大气细粒子与相关气体污染特征[J]. 中国环境科学, 2010, 30(7):954-961. [DENG L Q, LI H, CHAI F H, et al. Pollution characteristics of the atmospheric fine particles and related gaseous pollutants in the northeastern urban area of Beijing in winter season[J]. China Environmental Science, 2010, 30(7):954-961.]
[32] 赵普生, 张小玲, 孟伟, 等. 京津冀区域气溶胶中无机水溶性离子污染特征分析[J]. 环境科学, 2011, 32(6):1546-1549. [ZHAO P S, ZHANG X L, MENG W, et al. Characteristics of inorganic water-soluble ions from aerosols in Beijing-Tianjin-Hebei area[J]. Environmental Science, 2011, 32(6):1546-1549.]
[33] 段凤魁, 刘咸德, 鲁毅强, 等. 北京市大气颗粒物的浓度水平和离子物种的化学形态[J]. 中国环境监测, 2003, 19(1):13-17. [DUAN F K, LIU X D, LU Y Q, et al. Concentration level of TSP and chemical speciation of ion species in Beijing[J]. Environmental Monitoring in China, 2003, 19(1):13-17.]
[34] 温天雪, 王跃思, 张凯. 采暖季北京大气PM10中硫酸盐与硫氧化率的观测研究[J]. 中国科学院研究生院学报, 2007, 24(5):584-589. [WEN T X, WANG Y S, ZHANG K. Study on sulfate and sulfur oxidation ratio in PM10 during heating season in Beijing[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2007, 24(5):584-589.]
[35] KHODER M I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area[J]. Chemosphere, 2002, 49(6):675-684.
[1] 童小容, 杨庆媛, 毕国华, . 重庆市2000~2015年土地利用变化时空特征分析[J]. 长江流域资源与环境, 2018, 27(11): 2481-2495.
[2] 孔锋, 杨萍, 王品, 吕丽莉, 孙劭. 中国灾害性对流天气日数的时空变化特征[J]. 长江流域资源与环境, 2018, 27(11): 2518-2528.
[3] 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729.
[4] 张岩, 付昌昌, 毛磊, 龚绪龙, 李向全. 江苏盐城地区地下水水化学特征及形成机理[J]. 长江流域资源与环境, 2017, 26(04): 598-605.
[5] 卢燕宇, 王胜, 田红, 邓汗青, 何冬燕. 近50年安徽省气候生产潜力演变及粮食安全气候承载力评估[J]. 长江流域资源与环境, 2017, 26(03): 428-435.
[6] 许玲燕, 杜建国, 刘高峰. 基于云模型的太湖流域农村水环境承载力动态变化特征分析——以太湖流域镇江区域为例[J]. 长江流域资源与环境, 2017, 26(03): 445-453.
[7] 黄亚男, 纪道斌, 龙良红, 刘德富, 宋林旭, 苏青青. 三峡库区典型支流春季特征及其水华优势种差异分析[J]. 长江流域资源与环境, 2017, 26(03): 461-470.
[8] 毛婉柳, 徐建华, 卢德彬, 杨东阳, 赵佳楠. 2015年长三角地区城市PM2.5时空格局及影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 264-272.
[9] 赵登忠, 肖潇, 汪朝辉, 谭德宝, 陈永柏. 水布垭水库水体碳时空变化特征及其影响因素分析[J]. 长江流域资源与环境, 2017, 26(02): 304-313.
[10] 谭静, 陈正洪, 罗学荣, 阳威, 舒斯, 徐金华. 湖北省旅游景区大气负氧离子浓度分布特征以及气象条件的影响[J]. 长江流域资源与环境, 2017, 26(02): 314-323.
[11] 祁海霞, 王晓玲, 李银娥, 白永清. 长江上游中小洪水天气学机理分析及致洪特征[J]. 长江流域资源与环境, 2016, 25(Z1): 83-94.
[12] 樊敏, 郭亚琳, 李富程, 王青. 岷江上游山区聚落生态位地理特征与驱动因子间关系研究[J]. 长江流域资源与环境, 2016, 25(11): 1687-1696.
[13] 毕国华, 杨庆媛, 王兆林, 匡垚瑶, 慕卫东. 丘陵山区都市边缘农村居民点土地利用空间特征分析——以重庆两江新区为例[J]. 长江流域资源与环境, 2016, 25(10): 1555-1565.
[14] 彭焕华, 李朝奎, 唐志光, 梁继. 丹江口库区陆地植被物候空间格局及其与海拔的响应关系[J]. 长江流域资源与环境, 2016, 25(10): 1626-1634.
[15] 江松颖, 刘颖, 万晶. 湖北省粮食生产的时空特征演变研究——基于耕地因素分解的视角[J]. 长江流域资源与环境, 2016, 25(09): 1339-1346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张 政, 付融冰| 杨海真, 顾国维. 水量衡算条件下人工湿地对有机物的去除[J]. 长江流域资源与环境, 2007, 16(3): 363 .
[2] 许素芳,周寅康. 开发区土地利用的可持续性评价及实践研究——以芜湖经济技术开发区为例[J]. 长江流域资源与环境, 2006, 15(4): 453 -457 .
[3] 吕东亮. 汉江水质优于长江的原因刍议[J]. 长江流域资源与环境, 2006, 15(Sup1): 102 -104 .
[4] 郝汉舟, 靳孟贵, 曹李靖, 谢先军. 模糊数学在水质综合评价中的应用[J]. 长江流域资源与环境, 2006, 15(Sup1): 83 -87 .
[5] 彭刚华,黄良英. 长江水质评价和预测模型探讨[J]. 长江流域资源与环境, 2006, 15(Sup1): 77 -82 .
[6] 刘耀彬, 李仁东. 现阶段湖北省经济发展的地域差异分析[J]. 长江流域资源与环境, 2004, 13(1): 12 -17 .
[7] 陈永柏,. 三峡工程对长江流域可持续发展的影响[J]. 长江流域资源与环境, 2004, 13(2): 109 -113 .
[8] 张 雷,吴映梅. 长江干流地区区域发展与国家工业化[J]. 长江流域资源与环境, 2005, 14(5): 633 -637 .
[9] 魏 伟,周 婕,许 峰. 大城市边缘区土地利用时空格局模拟——以武汉市洪山区为例[J]. 长江流域资源与环境, 2006, 15(2): 174 -179 .
[10] 翁君山,段 宁| 张 颖. 嘉兴双桥农场大气颗粒物的物理化学特征[J]. 长江流域资源与环境, 2008, 17(1): 129 .