长江流域资源与环境 >> 2017, Vol. 26 >> Issue (01): 110-117.doi: 10.11870/cjlyzyyhj201701013

• 生态环境 • 上一篇    下一篇

基于Copula相依函数的安徽省气温与降雨量相关性研究

叶明华1, 汪荣明1, 丁越1, 束炯2   

  1. 1. 华东师范大学统计学院, 上海 200241;
    2. 华东师范大学地理信息科学教育部重点实验室, 上海 200241
  • 收稿日期:2016-05-20 修回日期:2016-09-26 出版日期:2017-01-20
  • 作者简介:叶明华(1978~),女,副教授,研究方向为农业风险管理.E-mail:mhye@stat.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金(71403088);国家社科基金重大项目(13&ZD161);高等学校学科创新引智计划(B14019)

INTERACTION OF TEMPERATURE AND RAINFALL IN ANHUI PROVINCE BASED ON COPULA FUNCTION

YE Ming-hua1, WANG Rong-ming1, DING Yue1, SHU Jiong2   

  1. 1. School of Statistics, East China Normal University, Shanghai 200241, China;
    2. Geographic Information Science Key Laboratory of Ministry of Education, East China Normal University, Shanghai 200241, China
  • Received:2016-05-20 Revised:2016-09-26 Online:2017-01-20
  • Supported by:
    National Natural Science Foundation of China (71403088);National Social Science Fund Key Projects (13&ZD161);Supported by the 111 Project (B14019)

摘要: 当前全球气候变暖大背景下,气温和降雨量的交互作用引致农业气象灾害频发,给农业生产造成破坏性风险损失,因此探讨气温与降雨量之间的动态相依关系尤为重要。搜集安徽省24个气象观测站1980~2014年的气温与降雨量日数据,对原始数据进行矩平均处理,使两组数据列满足独立同分布的要求。采用非参数核估计的方法确定气温与降雨量的边缘分布。根据降雨量和气温的均匀分布散点图和频数分布直方图可知,安徽省气温和降雨量之间呈现一定程度的负相依关系,即图形中表现出气温与降雨量的上下尾之间的对称性。综上分析,选择可以刻画两个变量具有上下尾对称关系的Copula函数对气温与降雨量的相依关系进行拟合,最终在平方欧式距离最小的原则下选定二元t-Copula函数做出气温与降雨量之间的联合概率密度函数图。研究结果发现:①据安徽省气温与降雨量联合概率分布可知,当降雨量上升时,气温下降;或气温上升时,降雨量会下降,气温与降雨量之间呈现为中等负相关关系(-0.280)。②极值相关性方面,从t-Copula密度函数图和上下尾相关系数看,安徽省气温与降雨量在极值方面具有较为明显的相依关系,表现为当气温和降雨量超过正常范畴时,二者相依关系从负相关转变为正相关,此现象多出现在极端气候条件下,例如极端高温和大暴雨时气温与降雨量的正相依性。

关键词: 气温, 降雨量, Copula函数, 联合概率分布, 极值相关

Abstract: Under the background of global warming, the interaction of temperature and rainfall makes the agricultural meteorological disasters occur frequently, causing destructive risk to agricultural production. In this paper, we collected daily data of rainfall and temperature observed at 24 meteorological stations in Anhui Province in the period of 1980-2014 and collected the monthly average rainfall data of each station. We calculated the moment average rainfall of each station by subtracting average monthly rainfall data from the monthly raw rainfall data divided by the average. Finally, we used the average of moment average rainfall of 24 stations as rainfall data of Anhui Province. According to the rainfall frequency histogram, the distribution of rainfall data was asymmetric, showing some level of right-skewness. According to the temperature frequency histogram, the distribution of temperature data was basically symmetric while presenting "peak thick tail" features. Therefore, we determined the marginal distributions of temperature and rainfall data through non parametric kernel estimation method. The frequency histograms of rainfall and temperature showed that there was a negative correlation between them, suggesting that the diagram presented the symmetric upper and lower tails of rainfall and temperature. Based on this symmetry, we selected three types of Copula functions, i.e., normal Copula, t-Copula and frank-Copula. Finally, based on the principle of minimum squared Euclidean distance, bivariate t-copula function is chosen to draw the probability density function of rainfall and temperature. The results showed that from the perspective of joint probability distribution of temperature and precipitation in Anhui Province, when the rainfall was rising, the temperature dropped; or when the temperature was rising, the rainfall decreased. There was a medium negative correlation (-0.280) between rainfall and temperature. From the perspective of probability density function diagram of t-copula and upper and lower tail correlation coefficient, the temperature and rainfall in Anhui Province had a relatively obvious dependence relation in extreme, which means, when the temperature and rainfall were beyond normal range, their dependence changed from negative correlations to positive correlations. This phenomenon would occur more in extreme weather conditions, such as extreme high temperature or rainstorm.

Key words: temperature, rainfall, Copula function, probability density function of rainfall and temperature, extremum correlation

中图分类号: 

  • S114
[1] LIU Z Y, ZHOU P, CHEN X Z, et al. A multivariate conditional model for streamflow prediction and spatial precipitation refinement[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(19):10116-10129.
[2] 魏柱灯, 方修琦, 苏筠. 气候变化对中国古代财政平衡的影响[J]. 地理科学, 2015, 35(9):1156-1163. [WEI Z D, FANG X Q, SU Y. Climatic impacts on the fiscal balance in ancient China[J]. Scientia Geographica Sinica, 2015, 35(9):1156-1163.]
[3] SCHLÜNZEN K H, HOFFMANN P, ROSENHAGEN G, et al. Long-term changes and regional differences in temperature and precipitation in the metropolitan area of Hamburg[J]. International Journal of Climatology, 2010, 30(8):1121-1136.
[4] 虞海燕, 刘树华, 赵娜, 等. 我国近59年日照时数变化特征及其与温度、风速、降水的关系[J]. 气候与环境研究, 2011, 16(3):389-398. [YU H Y, LIU S H, ZHAO N, et al. Variation characteristics of the sunshine duration and its relationships with temperature, wind speed, and precipitation over recent 59 years in China[J]. Climatic and Environmental Research, 2011, 16(3):389-398.]
[5] ZENG W, YU Z, WU S H, et al. Changes in annual, seasonal and monthly precipitation events and their link with elevation in Sichuan province, China[J]. International Journal of Climatology, 2015, 36(5):2303-2322.
[6] WU Y J, WU S Y, WEN J H, et al. Changing characteristics of precipitation in China during 1960-2012[J]. International Journal of Climatology, 2016, 36(3):1387-1402.
[7] WANG F, YANG S, HIGGINS W, et al. Long-term changes in total and extreme precipitation over China and the United States and their links to oceanic-atmospheric features[J]. International Journal of Climatology, 2014, 34(2):286-302.
[8] AGHAKOUCHAK A, CHENG L Y, MAZDIYASNI O, et al. Global warming and changes in risk of concurrent climate extremes:Insights from the 2014 California drought[J]. Geophysical Research Letters, 2014, 41(24):8847-8852.
[9] OKHRIN O, ODENING M, XU W. Systemic weather risk and crop insurance:the case of China[J]. Journal of Risk and Insurance, 2013, 80(2):351-372.
[10] 王柳, 熊伟, 温小乐, 等. 温度降水等气候因子变化对中国玉米产量的影响[J]. 农业工程学报, 2014, 30(21):138-146. [WANG L, XIONG W, WEN X L, et al. Effect of climatic factors such as temperature, precipitation on maize production in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21):138-146.]
[11] 崔曜鹏, 魏海宁, 张凯荣, 等. 1961-2000年中国降水与气温变化的关系分析[J]. 现代农业科技, 2015(5):239-242. [CUI Y P, WEI H N, ZHANG K R, et al. Analysis on relationship between precipitation and temperature variation in China from 1961 to 2000[J]. Modern Agricultural Science and Technology, 2015(5):239-242.]
[12] 黄晓璐, 徐海明, 邓洁淳. 冬季中国近海海表温度的长期升高及其对中国降水的影响[J]. 气象学报, 2015, 73(3):505-514.[ HUANG X L, XU H M, DENG J C. Long-term rising of SST over the marginal seas of China in winter and its impact on precipitation in China[J]. Acta Meteorologica Sinica, 2015, 73(3):505-514.]
[13] 孙溦, 李建, 宇如聪. 华南暖季极端降水与气温的对应关系[J]. 气候变化研究进展, 2013, 9(2):96-101. [SUN W, LI J, YU R C. An analysis on relation between warm season precipitation extremes and surface air temperature in South China[J]. Progressus Inquisitiones de Mutatione Climatis, 2013, 9(2):96-101.]
[14] GYASI-AGYEI Y. Evaluation of the effects of temperature changes on fine timescale rainfall[J]. Water Resources Research, 2013, 49(7):4379-4398.
[15] 汪宝龙, 张明军, 魏军林, 等. 西北地区近50a气温和降水极端事件的变化特征[J]. 自然资源学报, 2012, 27(10):1720-1733. [WANG B L, ZHANG M J, WEI J L, et al. The change in extreme events of temperature and precipitation over Northwest China in recent 50 years[J]. Journal of Natural Resources, 2012, 27(10):1720-1733.]
[16] 杨春艳, 沈渭寿, 林乃峰. 西藏高原近50年气温和降水时空变化特征研究[J]. 干旱区资源与环境, 2013, 27(12):167-172. [YANG C Y, SHEN W S, LIN N F. Temp-spatial changes of temperature and precipitation over the Tibet Plateau during the last 50 years[J]. Journal of Arid Land Resources and Environment, 2013, 27(12):167-172.]
[17] 孙道勋, 杨海军. 温室气体变化数值模拟试验中全球降水和温度变化的迟滞效应[J]. 北京大学学报(自然科学版), 2015, 51(4):763-771. [SUN D X, YANG H J. Hysteresis effect in the temperature and precipitation changes in numerical simulation with varying greenhouse gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(4):763-771.]
[18] 李佩成, 郭曼, 王丽霞, 等. 近60年来中国大陆降水、气温动态及其相互关系的初步研究[J]. 中国工程科学, 2011, 13(4):29-36. [LI P C, GUO M, WANG L X, et al. Research of dynamics and relation]ship of precipitation and temperature in the recent 60 years in China[J]. Engineering Science, 2011, 13(4):29-36.
[19] 张玉虎, 王琛茜, 刘凯利, 等. 不同概率分布函数降雨极值的适用性分析[J]. 地理科学, 2015, 35(11):1460-1467. [ZHANG Y H, WANG C X, LIU K L, et al. Applicability of different probability distributions to estimated extreme rainfall[J]. Scientia Geographica Sinica, 2015, 35(11):1460-1467.]
[20] 张润霞, 侯茂生, 陈宇卫, 等. 安徽省主要自然灾害及综合减灾战略构思[J]. 自然灾害学报, 1994, 3(1):15-24. [ZHANG R X, HOU M S, CHEN Y W, et al. The main natural disasters and the strategic conceptions of comprehensive disaster reduction in Anhui province[J]. Journal of Natural Disasters, 1994, 3(1):15-24.]
[21] 胡預生, 轉可欽. 安徽淮北地区旱涝災害分析[J]. 安徽农业科学, 1964(1):14-19.
[22] SKLAR A. Fonctions de répartition àn dimensions et leurs marges[J]. Paris:Publications de l'Institut de Statistique de l'Université de Paris, 1959:229-331.
[23] PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3):1065-1076.
[24] GANGULI P, REDDY M J. Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach[J]. Hydrological Processes, 2014, 28(19):4989-5009.
[1] 彭霞, 郭冰瑶, 魏宁, 佘倩楠, 刘敏, 象伟宁. 近60 a长三角地区极端高温事件变化特征及其对城市化的响应[J]. 长江流域资源与环境, 2016, 25(12): 1917-1926.
[2] 陈晶, 顾世祥, 何大明, 陈刚. 近60多年来滇池流域干旱特性及重现期分析[J]. 长江流域资源与环境, 2016, 25(09): 1457-1465.
[3] 丁文荣. 环洱海地区气候变化特征研究[J]. 长江流域资源与环境, 2016, 25(04): 599-605.
[4] 杨晓静, 徐宗学, 左德鹏, 赵焕. 云南省1958~2013年极端气温时空变化特征分析[J]. 长江流域资源与环境, 2016, 25(03): 523-536.
[5] 祁栋林, 李晓东, 肖宏斌, 周万福, 苏文将, 胡爱军, 李璠. 近50 a三江源地区蒸发量的变化特征及其影响因子分析[J]. 长江流域资源与环境, 2015, 24(09): 1613-1620.
[6] 周明涛, 胡旭东, 张守德, 高家祯. 降雨径流面源污染年负荷预测方法的开发——以镇江古运河为例[J]. 长江流域资源与环境, 2015, 24(08): 1381-1386.
[7] 陈心池, 张利平, 闪丽洁, 杨卫, 徐霞. 基于Copula函数的汉江中上游流域极端降雨洪水联合分布特征[J]. 长江流域资源与环境, 2015, 24(08): 1425-1433.
[8] 李凌琪, 熊立华, 江聪, 张洪刚. 气温对长江上游巴塘站年径流的影响分析[J]. 长江流域资源与环境, 2015, 24(07): 1142-1149.
[9] 倪敏莉, 张佳华, 申双和. 南京市不同时间尺度温度变化特征[J]. 长江流域资源与环境, 2010, 19(2): 169-.
[10] 曾小凡 翟建青 苏布达 姜 彤 朱 进. 长江流域年平均气温的时空变化特征[J]. 长江流域资源与环境, 2009, 18(5): 427-.
[11] 李 兰 陈正洪 周月华 史瑞琴 万素琴 郭广芬. 湖北省2008年初低温雨雪冰冻过程气候特征分析[J]. 长江流域资源与环境, 2009, 18(3): 291-295.
[12] 游庆龙. 三江源地区1961~2005年气温极端事件变化[J]. 长江流域资源与环境, 2008, 17(2): 232-232.
[13] 郭 华,,殷国强5|姜 彤. 未来50年鄱阳湖流域气候变化预估[J]. 长江流域资源与环境, 2008, 17(1): 73-73.
[14] 丁 斌,顾显跃,缪启龙. 长江流域近50年来的气温变化特征[J]. 长江流域资源与环境, 2006, 15(4): 531-536.
[15] 班军梅,缪启龙,李 雄. 西南地区近50年来气温变化特征研究[J]. 长江流域资源与环境, 2006, 15(3): 346-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟爱云, 濮励杰. 区域耕地数量变化与工业化、城市化进程相互关系探讨——以江苏省为例[J]. 长江流域资源与环境, 2008, 17(2): 237 .
[2] 田晓四, 陈 杰,朱 诚,朱同林. 南京市经济增长与工业“三废”污染水平计量模型研究[J]. 长江流域资源与环境, 2007, 16(4): 410 .
[3] 贾泽露,. GIS与SDM集成构建土地定级专家信息系统的研究[J]. 长江流域资源与环境, 2007, 16(3): 323 .
[4] 胥 晓|郑伯川|陈友军. 嘉陵江流域植被景观的空间格局特征[J]. 长江流域资源与环境, 2007, 16(3): 373 .
[5] 戴润泉,臧小平,邱光胜. 三峡水库蓄水前库区水质状况研究[J]. 长江流域资源与环境, 2004, 13(2): 124 -127 .
[6] 谢 洪,钟敦伦,李 泳,韦方强. 长江上游泥石流灾害的特征[J]. 长江流域资源与环境, 2004, 13(1): 94 -99 .
[7] 刘昭伟,陈永灿,申满斌. 三峡水库水质模型的选取和系统集成[J]. 长江流域资源与环境, 2004, 13(2): 128 -132 .
[8] 崔 鸿, 汪 亮,. 略论我国长江渔业资源的法律保护[J]. 长江流域资源与环境, 2006, 15(1): 58 -60 .
[9] 徐慧娟,黎育红,孙燕. 长江宜昌水文站流量、含沙量和悬移质粒度关系[J]. 长江流域资源与环境, 2006, 15(Sup1): 110 -115 .
[10] 张信宝,曹植菁, 艾南山. 溪洛渡水电工程拦沙对三峡水库富营养化潜在影响的初步研究[J]. 长江流域资源与环境, 2009, 18(2): 170 .