长江流域资源与环境 >> 2017, Vol. 26 >> Issue (06): 925-936.doi: 10.11870/cjlyzyyhj201706015

• 生态环境 • 上一篇    下一篇

三峡水库水质变化趋势研究

卓海华, 吴云丽, 刘旻璇, 郑红艳, 兰静   

  1. 长江流域水环境监测中心, 湖北 武汉 430010
  • 收稿日期:2016-11-02 修回日期:2017-01-22 出版日期:2017-06-20
  • 通讯作者: 兰静,E-mail:89073107@qq.com E-mail:89073107@qq.com
  • 作者简介:卓海华(1978~),男,硕士,高级工程师,主要研究方向为流域水环境监测评价.E-mail:harderjoe@sina.com
  • 基金资助:
    国务院三峡工程建设委员会办公室三峡水库运行维护管理资金项目;水资源高效开发利用重点专项

TREND STUDY OF WATER QUALITY IN THE THREE GORGES RESERVOIR

ZHUO Hai-hua, WU Yun-li, LIU Min-xuan, ZHENG Hong-yan, LAN Jing   

  1. Yangtze Valley Water Environment Monitoring Center, Wuhan 430010, China
  • Received:2016-11-02 Revised:2017-01-22 Online:2017-06-20
  • Supported by:
    Foundation Program of Three Gorges Reservoir Operation and MaintenanceManagement of The Three Gorges Project Construction Committee of the State Council;Key Program on WaterResources Development and Utilization

摘要: 为全面研究三峡水库蓄水之前至175 m蓄水运行期库区水质变化趋势和因蓄水导致水文条件变化后悬浮物、高锰酸盐指数、总磷等主要污染因子变化及其相互关系,通过对2000~2015年三峡水库水体水质状况进行分析,得出如下结论:三峡水库干流水质较好,其受水期及水库蓄水调度影响明显但逐渐减弱。受蓄水导致的水流条件变化、上游来水、支流汇入及沿程点面源污染等因素影响,干流沿程各断面水质变化趋势不完全一致;除清溪场和沱口断面外,从库尾到库首水质评价结果优于Ⅲ类的比例总体呈上升趋势。受蓄水影响,御临河、小江、大宁河及香溪河河口断面水质均呈下降趋势。三峡水库上游来水悬浮物含量变化与水期存在较好相关性,但自2013年开始上游来水各水期悬浮物含量均下降,悬浮物通量较2013年之前平均降低约80%。水库库中、库首断面近年来悬浮物含量在丰水期和平水期下降,其后逐渐趋于稳定,枯水期变化不明显。蓄水后主要支流河口悬浮物含量大部分时段低于库区干流同期,上游支流河口断面悬浮物含量受水期影响较库区中下游支流河口明显。干支流各断面高锰酸盐指数和总磷在各水期变化趋势各异,上游断面丰水期变化较下游断面明显;随着蓄水进程,各断面高锰酸盐指数和总磷在平水期和枯水期之间、断面间差异越来越小。悬浮物含量与高锰酸盐指数、总磷等参数之间存在一定的相关性,但在较长时间范围,不能通过拟合等手段将水样一种状态的测定结果推出样品另一种状态近似检测结果。

关键词: 水质, 趋势, 三峡水库, 蓄水

Abstract: Water quality of the Three Gorges Reservoir from 2000–2015 was analyzed, in order to investigate the trends of water quality parameters and the relationship between the key pollutants such as suspended substance(SS), potassium permanganate index (CODMn), and total phosphorus (TP) from the Three Gorges Reservoir storing up to 175 m. Results revealed a good water quality in the area of the mainstream of the Three Gorges Reservoir and a less pronounced influence by the reservoir scheduling. The observed trends differed among the monitoring sections along the mainstream owing to the change of hydrologic character, upland water, branch inflow as well as non-point and point sources pollution resulted from the impoundment. The proportion of evaluation results of water quality that better than Class Ⅲ was increasing in the whole reservoir except the Qingxichang and Tuokou sections. Influenced by impoundment, water quality declining was found in Yulinhekou, Xiaojianghekou, Daninghekou and Xiangxihekou sections. Although a good correlation between the SS concentration and the period was observed for the upland water of the Three Gorges Reservoir, SS concentration was reduced during each period since 2013, which resulted in a reduction about of 80% for SS flux. SS concentration was decreased temporally during the high-flow period and normal-flow period in both the center and head region of the reservoir, but was stable during the low-flow period. After the impoundment, a lower value of SS was usually found in the main branches estuary compared with that in the mainstream of the reservoir at the same time. Meanwhile, the value of SS in the upper branches estuary was influenced by the flow period more obviously than that in the middle and lower branches of the reservoir. CODMn and TP differed significantly among different periods. During the high-flow period, the variation of CODMn and TP in the upstream sections was obviously than that in the downstream sections. After impoundment, CODMn and TP showed no significant differences among the periods and sections. Limited correlation was observed between SS, CODMn and TP, however, the results cannot be derived from the detect value of one sample in a long time.

Key words: water quality, trends, Three Gorges Reservoir, water storage

中图分类号: 

  • X824
[1] 邱光胜, 涂 敏, 叶 丹, 等. 三峡库区支流富营养化状况普查[J]. 人民长江, 2008, 39(13):1-4.[QIU G S, TU M, YE D, et al. General investigation of eutrophication for tributaries in TGP reservoir area[J]. Yangtze River, 2008, 39(13):1-4.]
[2] 向迎春, 张丽莹, 刘贵强, 等. 三峡水库万州段支流回水区富营养化时空分布研究[J]. 重庆三峡学院学报, 2014, 30(3):4-9.[XIANG Y C, ZHANG L Y, LIU G Q, et al. A spatial and temporal distribution of eutrophication in Wanzhou section tributary backwater area in Three Gorges Reservoir[J]. Journal of Chongqing Three Gorges University, 2014, 30(3):4-9.]
[3] 彭成荣, 陈 磊, 毕永红, 等. 三峡水库洪水调度对香溪河藻类群落结构的影响[J]. 中国环境科学, 2014, 34(7):1863-1871.[PENG C R, CHEN L, BI Y H, et al. Effects of flood regulation on phytoplankton community structure in the Xiangxi River, a tributary of the Three Gorges Reservoir[J]. China Environmental Science, 2014, 34(7):1863-1871.]
[4] 王自业, 葛继稳, 李建峰, 等. 三峡库区古夫河着生藻类分布与水质因子的关系[J]. 植物科学学报, 2013, 31(3):219-227.[WANG Z Y, GE J W, LI J F, et al. Relationship between periphyton distribution and water quality of Gufu River of Three Gorges Reservoir area[J]. PIant Science Journal, 2013, 31(3):219-227.]
[5] 周 谐, 郑 坚, 黄书铭, 等. 三峡库区重庆段浮游藻类调查及水质评价[J]. 中国环境监测, 2006, 22(4):70-73.[ZHOU X, ZHENG J, HUANG S M, et al. Investigation and evaluation of pelagic algae and water quality about the Three Gorges Reservoir of Chongqing[J]. Environmental Monitoring in China, 2006, 22(4):70-73.]
[6] 雷 欢, 梁银铨, 朱爱民, 等. 三峡水库童庄河浮游植物及其与水质的关系[J]. 湖泊科学, 2010, 22(2):195-200.[LEI H, LIANG Y Q, ZHU A M, et al. Phytoplankton and water quality in the Tongzhuang River of Three Gorges Reservoir[J]. Journal of Lake Sciences, 2010, 22(2):195-200.]
[7] 印士勇, 娄保锋, 刘 辉, 等. 三峡工程蓄水运用期库区干流水质分析[J]. 长江流域资源与环境, 2011, 20(3):305-310.[YIN S Y, LOU B F, LIU H, et al. Analysis of water quality of the Yangtze river within the Three Gorges Reservoir area during construction period[J]. Resources and Environment in the Yangtze Basin, 2011, 20(3):305-310.]
[8] 尹真真, 李 琎. 三峡水库蓄水前后长江干流主要污染物浓度变化趋势分析研究[J]. 环境科学与管理, 2014, 39(3):42-45.[YIN Z Z, LI J. Variation Tendencies of major pollutants concentration in mainstream of Changjiang River before and after in Three Gorges Dam[J]. Environmental Science and Management, 2014, 39(3):42-45.]
[9] 冯 静, 何太蓉, 韦 杰. 三峡工程蓄水前后库区水质变化及对策分析[J]. 重庆师范大学学报(自然科学皈), 2011, 28(2):23-27.[FENG J, HE T R, WEI J. Analysis of water quality variation and countermeasures in Three Gorges Project Reservoir Area Before and after impoundment[J]. Journal of Chongqing Normal University (Natural Science), 2011, 28(2):23-27.]
[10] 黄庆超, 刘广龙, 王雨春, 等. 不同水位运行下三峡库区干流水质变化特征[J]. 人民长江, 2015, 46(S1):132-136.[HUANG Q C, LIU G L, WANG Y C, et al. Variations of water quality in the mainstream of the Three Gorges Reservoir during different flow period[J]. Yangtze River, 2015, 46(S1):132-136.]
[11] 张广纳, 邵景安, 王金亮. 基于农业面源污染的三峡库区重庆段水质时空格局演变特征[J]. 自然资源学报, 2015, 30(11):1872-1884.[ZHANG G N, SHAO J A, WANG J L. Spatial and temporal variations of water resource security level in the Three Gorges Reservoir area of chongqing based on agricultural non-point source pollutant[J]. Journal of Natural Resources, 2015, 30(11):1872-1884.]
[12] 娄保锋, 印士勇, 穆宏强, 等. 三峡水库蓄水前后干流总磷浓度比较[J]. 湖泊科学, 2011, 23(6):863-867.[LOU B F, YIN S Y, MU H Q, et al. Comparison of total phosphorus concentration of Yangtze River within the Three Gorges Reservoir before and after impoundment[J]. Journal of Lake Sciences, 2011, 23(6):863-867.]
[13] 曹 佳, 舒为群, 黄玉明, 等. 三峡库区及重庆主城区蓄水前后水中持久性有毒物质的污染及变化趋势[J]. 成都医学院学报, 2012, 7(1):2-5, 14.[CAO J, SHU W Q, HUANG Y M, et al. Pollution status and variation tendency of persistent toxic substances in the Three Gorges Reservoir[J]. Journal of Chengdu Medical College, 2012, 7(1):2-5, 14.]
[14] 李崇明, 晁晓波, 吕平毓, 等. 三峡水库回水变动区水流、水质演变数值模拟研究[J]. 环境影响评价, 2013(6):54-60.[LI C M, CHAO X B, LÜ P Y, et al. Numercal simulation of the water flow and water quality in the fluctuating backwater area of Three Gorges Reservoir. Environmental Impact Assessment, 2013, 35(6):54-60.]
[15] 林 筝, 朱 亮, 吴炳方, 等. 基于WebGIS三峡干流水质模拟平台研究[J]. 长江流域资源与环境, 2012, 21(8):987-993.[LIN Z, ZHU L, WU B F, et al. Numerical simulation platform of main streamwater quality within the Three Gorges Reservoir Area based on WebGIS[J]. Resources and Environment in the Yangtze Basin, 2012, 21(8):987-993.]
[16] 王晓青. 三峡库区澎溪河(小江)富营养化及水动力水质耦合模型研究[D]. 重庆:重庆大学博士学位论文, 2012.[WANG X Q. Study on the eutrophication and models of hydrodynamic and water quality in the Pengxi (Xiaojiang) River of Three Gorges Reservoir[D]. Chongqing:Doctor Dissertation of Chongqing University, 2012.]
[17] 程庭莉. 基于支持向量机的三峡库区水质预测与评价方法研究[D]. 重庆:重庆大学硕士学位论文, 2013.[CHENG T L. Study of prediction and evaluation method based on SVM for water quality in Three Gorges Reservior Area[D]. Chongqing:Master Dissertation of Chongqing University, 2013.]
[18] 曹彦龙, 李崇明, 郭劲松, 等. 重庆三峡库区非点源污染来源分析及负荷计算[J]. 重庆建筑大学学报, 2007, 29(4):1-5.[CAO Y L, LI C M, GUO J S, et al. Pollutant source analysis and pollution loads estimation from non-point source in Chongqing Three Gorges Reservoir Region[J]. Journal of Chongqing Jianzhu University, 2007, 29(4):1-5.]
[19] 陈 媛, 郭秀锐, 程水源, 等. 基于SWAT模型的三峡库区流域污染物来源分析及重点控制区域识别[J]. 北京工业大学学报, 2013, 39(5):761-768.[CHEN Y, GUO X R, CHENG S Y, et al. Pollutant source analysis and identification of prior control areas in Three Gorges Reservoir based on SWAT model[J]. Journal of Beijing University of Technology, 2013, 39(5):761-768.]
[20] 水利部长江水利委员会. 三峡(初期运行期)-葛洲坝水利枢纽梯级调度规程[R]. 武汉:水利部长江水利委员会, 2006.
[21] 中华人民共和国水利部. SL 219-2013 水环境监测规范[S]. 北京:中国水利水电出版社, 2014.[The Ministry of Water Resources of the People's Republic of China. SL 219-2013 Regulation for water environmental monitoring[S]. Beijing:China Water & Power Press, 2014.]
[22] 中华人民共和国环境保护部. GB 3838-2002 地表水环境质量标准[S]. 北京:中国环境科学出版社, 2002.[Ministry of Environmental Protection of the People's Republic of China. GB 3838-2002 Environmental quality standards for surface water[S]. Beijing:China Environmental Science Press, 2002.]
[23] 娄保锋, 朱圣清. GB 3838-2002 实施前后水质参数的可比性研究[J]. 人民长江, 2008, 39(23):127-129, 133.[LOU B F, ZHU S Q. The comparability study of the water quality parameters between before and after the implementation of GB 3838-2002[J]. Yangtze River, 2008, 39(23):127-129, 133.]
[24] 卓海华, 兰 静, 吴云丽, 等. 乌江磷污染对三峡水库水质影响研究[J]. 人民长江, 2014, 45(4):66-68.[ZHUO H H, LAN J, WU Y L, et al. Study on influence of phosphorus pollution of Wujiang River to water quality in Three Gorge Reservoir[J]. Yangtze River, 2014, 45(4):66-68.]
[25] 余明星, 邱 波, 夏 凡, 等. 三峡水库蓄水前后干流水质特征与变化趋势研究[J]. 人民长江, 2011, 42(23):34-38.[YU M X, QIU B, XIA F, et al. Research on water quality characteristics and variation of mainstream of Yangtze River before and after impoundment of Three Gorges Reservoir[J]. Yangtze River, 2011, 42(23):34-38.]
[26] 中国环境监测总站. 长江三峡工程生态与环境监测公报[R]. 北京:中华人民共和国环境保护部, 2001-2015.[China National Environmental Monitoring Centre. The Yangtze River Three Gorges Project in Ecology and Environment Monitoring Bulletin[R]. Beijing:Ministry of Environmental Protection of the People's Republic of China, 2001-2015.]
[27] 刘 辉, 卓海华, 陈水松. 三峡水库试验性蓄水期间水环境质量监测分析[J]. 人民长江, 2012, 43(1):55-58.[LIU H, ZHUO H H, CHEN S S. Analysis of water environment quality during trial impoundment of Three Gorges Reservoir[J]. Yangtze River, 2012, 43(1):55-58.]
[28] 曾凡海, 张 晟, 熊 强, 等. 三峡水库干流氮和磷含量的季节变化[J]. 中国环境监测, 2012, 28(5):29-32.[ZENG F H, ZHANG S, XIONG Q, et al. Seasonal variation of nitrogen and phosphorus in Three-Gorge Reservoir[J]. Environmental Monitoring in China, 2012, 28(5):29-32.]
[29] 郭 胜, 李崇明, 郭劲松, 等. 三峡水库蓄水后不同水位期干流氮、磷时空分异特征[J]. 环境科学, 2011, 32(5):1266-1272.[GUO S, LI C M, GUO J S, et al. Spatio-temporal variation of nitrogen, phosphorus in different period in Three Gorges Reservoir after its impoundment[J]. Environmental Science, 2011, 32(5):1266-1272.]
[30] 长江流域水资源保护局. 三峡水库水体中氮磷影响研究[A]. 武汉. 长江流域水资源保护局, 2004.
[31] MURRAY K S, CAUVET D, LYBEER M, et al. Particle size and chemical control of heavy metals in bed sediment from the Rouge river, Southeast Michigan[J]. Environmental Science & Technology, 1999, 33(7):987-992.
[32] 环境保护部. HJ 494-2009 水质 采样技术指导[S]. 北京:中国环境科学出版社, 2009.[Ministry of Environmental Protection of the People's Republic of China. HJ 494-2009 Water quality-guidance on sampling techniques[S]. Beijing:China Environmental Science Press, 2009.]
[33] HJ/T 91-2002地表水和污水监测技术规范[S]. 北京:中国环境科学出版社, 2005.[HJ/T 91-2002 Technical specifications requirements for monitoring of surface water and waste water[S]. Beijing:China Environmental Science Press, 2005.]
[34] 国家环境保护局. GB 11901-1989 水质 悬浮物的测定 重量法[S]. 北京:中国标准出版社, 1990.[National Environmental Protection Agency. GB 11901-1989 Water quality-Determination of suspended substance-Gravimetric method[S]. Beijing:China Standard Press, 1990.]
[35] 臧小平, 印士勇, 娄保锋, 等. 三峡库区水样不同处理方式对水质参数监测值的影响研究[M]. 武汉:长江出版社, 2014.
[1] 杨洋, 张玮, 潘宏博, 顾琬雯, 郝瑞娟, 熊春晖, 王丽卿. 滆湖轮虫群落结构及其与水环境因子的关系[J]. 长江流域资源与环境, 2017, 26(06): 832-840.
[2] 郎登潇, 师嘉褀, 郑江坤, 廖峰, 马星, 王文武, 陈怡帆. 近52a西南地区潜在蒸散发时空变化特征[J]. 长江流域资源与环境, 2017, 26(06): 945-954.
[3] 王俊, 苏巍, 杨少荣, 姜伟. 金沙江一期工程蓄水前后绥江段鱼类群落多样性特征[J]. 长江流域资源与环境, 2017, 26(03): 394-401.
[4] 汪川乂, 赵采玲, 罗菊英. 恩施州气象站雾日变化趋势及原因分析[J]. 长江流域资源与环境, 2017, 26(03): 454-460.
[5] 杨超杰, 贺斌, 段伟利, 李冰, 陈雯, 杨桂山. 太湖典型丘陵水源地水质时空变化及影响因素分析——以平桥河流域为例[J]. 长江流域资源与环境, 2017, 26(02): 273-281.
[6] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[7] 王秀, 王振祥, 潘宝, 周春财, 刘桂建. 南淝河表层水中重金属空间分布、污染评价及来源[J]. 长江流域资源与环境, 2017, 26(02): 297-303.
[8] 彭霞, 郭冰瑶, 魏宁, 佘倩楠, 刘敏, 象伟宁. 近60 a长三角地区极端高温事件变化特征及其对城市化的响应[J]. 长江流域资源与环境, 2016, 25(12): 1917-1926.
[9] 李文浩, 张萌, 门吉帅, 敖雪夫, 胡新艳, 欧阳珊, 吴小平. 江西仙女湖流域大型底栖动物群落结构及水质评价[J]. 长江流域资源与环境, 2016, 25(08): 1218-1227.
[10] 夏少霞, 于秀波, 刘宇, 贾亦飞, 张广帅. 鄱阳湖湿地现状问题与未来趋势[J]. 长江流域资源与环境, 2016, 25(07): 1103-1111.
[11] 史超, 夏军, 佘敦先, 万蕙, 黄金凤. 气候变化下汉江上游林地植被生态需水量的时空演变[J]. 长江流域资源与环境, 2016, 25(04): 580-589.
[12] 温康民, 史军, 马井会. 1961~2013年长江三角洲地区霾日季节特征及变化分析[J]. 长江流域资源与环境, 2016, 25(04): 621-629.
[13] 杨晓静, 徐宗学, 左德鹏, 赵焕. 云南省1958~2013年极端气温时空变化特征分析[J]. 长江流域资源与环境, 2016, 25(03): 523-536.
[14] 彭俊翔, 伍永年, 胡维平, 邓建才. 长荡湖近61a降水量演化特征[J]. 长江流域资源与环境, 2016, 25(02): 292-299.
[15] 龚艳冰, 胡娜, 刘高峰, 冯兰萍. 基于GEV干旱指数和DFA方法的苏北地区季节性干旱研究[J]. 长江流域资源与环境, 2016, 25(01): 140-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李燕玲, 刘爱民. 长江流域冬季农业主要作物的耕地竞争机制及案例研究[J]. 长江流域资源与环境, 2009, 18(2): 146 .
[2] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[3] 简敏菲,弓晓峰,游 海,黄志中,朱 捷. 鄱阳湖水土环境及其水生维管束植物重金属污染[J]. 长江流域资源与环境, 2004, 13(6): 589 -593 .
[4] 王海英,宫渊波,陈林武. 不同植被恢复模式下土壤微生物及酶活性的比较——以嘉陵江上游地区为例[J]. 长江流域资源与环境, 2006, 15(2): 201 -206 .
[5] 向云波,徐长乐,彭秀芬. 长江三角洲城市群循环经济发展水平的空间格局分析[J]. 长江流域资源与环境, 2008, 17(5): 661 .
[6] 丰志勇,曾 刚. 上海市工业园区投资环境评价研究[J]. 长江流域资源与环境, 2006, 15(3): 274 -280 .
[7] 宋新山, 汪永辉, 秦 艳, 刘振鸿, 吴应玲. 上海新城区构建湿地处理污水的经济技术分析[J]. 长江流域资源与环境, 2006, 15(Sup1): 88 -91 .
[8] 陈曦. 宋至清荆江南岸分流四口的演变[J]. 长江流域资源与环境, 2009, 18(3): 270 -274 .
[9] 陈永柏, 邓 云| 梁瑞峰. 溪洛渡水电站叠梁门取水方式减缓下泄低温水的优化调度[J]. 长江流域资源与环境, 2010, 19(03): 340 .
[10] 田忠志, 邢友华, 姜瑞雪, 高雁. 东平湖表层沉积物中磷的形态分布特征研究[J]. 长江流域资源与环境, 2010, 19(06): 724 .