长江流域资源与环境 >> 2017, Vol. 26 >> Issue (01): 126-133.doi: 10.11870/cjlyzyyhj201701015

• 生态环境 • 上一篇    下一篇

鄱阳湖水位多时间尺度动态变化特性分析

张范平1, 方少文2, 周祖昊3, 温天福1, 张梅红1   

  1. 1. 江西省水利科学研究院, 江西 南昌 330029;
    2. 江西省水文局, 江西 南昌 330002;
    3. 中国水利水电科学研究院流域水循环模拟与调控国家重点实验室, 北京 100038
  • 收稿日期:2016-06-13 修回日期:2016-09-22 出版日期:2017-01-20
  • 通讯作者: 方少文,E-mail:swfang800@sina.com E-mail:swfang800@sina.com
  • 作者简介:张范平(1986~),男,博士后,主要从事水文水资源系统分析及水文生态学研究.E-mail:fanpingzhang@163.com
  • 基金资助:
    江西省水利科技重大项目(KT201411);江西省水利厅重大水利科技竞争性项目(KT201501);江西省水利科技重大项目(KT201508);江西省博士后科研择优资助项目(2016KY19)

RESEARCH ON MULTI-TIME-SCALE DYNAMIC CHARACTERISTICS OF WATER-LEVEL FLUCTUATION OF THE POYANG LAKE IN CHINA

ZHANG Fan-ping1, FANG Shao-wen2, ZHOU Zu-hao3, WEN Tian-fu1, ZHANG Mei-hong1   

  1. 1. Jiangxi Provincial Institute of Water Science, Nanchang 330029, China;
    2. Jiangxi Provincial Institute of Hydrographic Bureau, Nanchang 330002, China;
    3. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research(IWHR), Beijing 100038, China
  • Received:2016-06-13 Revised:2016-09-22 Online:2017-01-20
  • Supported by:
    The Water Conservancy Science and Technology Foundation of Jiangxi Province (KT201411);The Major Water Conservancy Science and Technology Competitive Foundation of Jiangxi waterconservancybureau (KT201501);The Water Conservancy Science and Technology Foundation of Jiangxi Province (KT201508);Post-doctoral Preferentially Research Foundation of Jiangxi Province (2016KY19)

摘要: 利用鄱阳湖湖口、星子、都昌、吴城、棠荫和康山水位站多年逐日水位资料,采用统计分析法、趋势分析法、Mann-Kendall非参数检验法和Morlet小波分析法分析了鄱阳湖水位年内变化特征、年际变化趋势、极值变化、突变特征及其周期性。结果表明:鄱阳湖水位在年内具有高动态变化的特征,月最高水位一般出现在7月份,平均水位为17.75 m,最低水位一般出现在1月份,平均水位为10.8 m,年内变化幅度达6.95 m;鄱阳湖水位在多年尺度上呈现微弱的下降趋势,但是自2003年以来下降幅度较大,并多次出现极低枯水位;按年代际来对比,则2000年以后的平均水位是所有年代中最低的;鄱阳湖日、月、年最高水位出现在1954年和1998年,年最低水位出现在2011年,月和日最低水位出现时间不一致,但都主要集中在2003年之后;鄱阳湖水位有2个比较明显的突变点,即1965年附近和2006年附近,其中都昌站突变前后最大水位差达到了1.3 m;鄱阳湖水位受多种因素的影响,并没有表现出明显的周期特性,只在28时间尺度上表现出微弱的周期特性。

关键词: 鄱阳湖, 水位动态变化, Mann-Kendall, Morlet小波

Abstract: The natural hydrological rhythm has been altered under the combined effect of climate change and intensifying anthropocentric activities during the past decades at Poyang Lake, the largest freshwater lake in China. The main objective of this paper is to analyze the change process of water-levers at different time scales. In this research, the fluctuation characteristics of water-lever, such as monthly changing feature, annual variance tendency, extreme values, saltation feature and periodicity, were evaluated by using statistical analysis, trend analysis, Mann-Kendall non-parameters test and wavelet analysis methods based on the observed daily water-level time series from Hukou Station, Xingzi Station, Duchang Station, Wucheng Station, Tangyin Station and Kangshan Station at Poyang Lake. The main findings are shown as follows:the water-level drastically fluctuated during months and the highest water level (17.75m) and lowest water level (10.8 m) generally appeared in July and January, respectively, with an amplitude of 6.95 m; although the water-level presented a feeble downward trend during the past decades, a rapidly descending amplitude occurred after 2003, accompanying extremely low water level situation; there are three obvious saltation points at 1955, 1965 and 2006, and the maximum water-level variation is close to 2 m; periodicity, effected by many factors, is inconspicuous only with a weak periodic in 28 time scale. Results of this study demonstrate the change situations of water-level at Poyang Lake in annual and inter-annual, which will provide instruction for water security associated with flood control, drinking water usage and water ecology in the lake basin. Furthermore, the results can be applied as a foundation for drawing scheduling rules of reservoirs.

Key words: Poyang Lake, dynamic water-level fluctuation, Mann-Kendall, Morlet wavelet

中图分类号: 

  • TV123
[1] 叶春, 刘元波, 赵晓松, 等. 基于MODIS的鄱阳湖湿地植被变化及其对水位的响应研究[J]. 长江流域资源与环境, 2013, 22(6):705-712. [YE C, LIU Y B, ZHAO X S, et al. Analysis of Poyang Lake wetland vegetation growth dynamics and its response to lake water level based on MODIS[J]. Resources and Environment in the Yangtze Basin, 2013, 22(6):705-712.]
[2] 罗蔚, 张翔, 邓志民, 等. 近50年鄱阳湖流域入湖总水量变化与旱涝急转规律分析[J]. 应用基础与工程科学学报, 2013, 21(5):845-856. [LUO W, ZHANG X, DENG Z M, et al. Variation of the total runoff into Poyang Lake and drought-flood abrupt alternation during the past 50 years[J]. Journal of Basic Science and Engineering, 2013, 21(5):845-856.]
[3] 欧阳千林, 刘卫林. 近50年鄱阳湖水位变化特征研究[J]. 长江流域资源与环境, 2014, 23(11):1545-1550. [OUYANG Q L, LIU W L. Variation characteristics of water level in Poyang Lake over 50 years[J]. Resources and Environment in the Yangtze Basin, 2014, 23(11):1545-1550.]
[4] 汪迎春, 赖锡军, 姜加虎, 等. 三峡水库调节典型时段对鄱阳湖湿地水情特征的影响[J]. 湖泊科学, 2011, 23(2):191-195. [WANG Y C, LAI X J, JIANG J H, et al. Effect of the three Gorge Reservoir on the water regime of the Lake Poyang wetlands during typical water-regulation period[J]. Journal of Lake Sciences, 2011, 23(2):191-195.]
[5] DAI X, WAN R R, YANG G S. Non-stationary water-level fluctuation in China's Poyang Lake and its interactions with Yangtze River[J]. Journal of Geographical Sciences, 2015, 25(3):274-288.
[6] 刘志刚, 倪兆奎. 鄱阳湖发展演变及江湖关系变化影响[J]. 环境科学学报, 2015, 35(5):1265-1273. LIU Z G, NI Z K. The rules and the effects of varing river-lake relationships on the evolution of Poyang Lake[J]. Acta Scientiae Circumstantiae, 2015, 35(5):1265-1273.]
[7] CAI X B, FENG L, WANG Y X, et al. Influence of the three gorges project on the water resource components of Poyang Lake watershed:observations from TRMM and GRACE[J]. Advances in Meteorology, 2015, 2015:148913.
[8] 谢冬明, 郑鹏, 邓红兵, 等. 鄱阳湖湿地水位变化的景观响应[J]. 生态学报, 2011, 31(5):1269-1276. [XIE D M, ZHENG P, DENG H B, et al. Landscape responses to changes in water levels at Poyang Lake wetlands[J]. Acta Ecologica Sinaca, 2011, 31(5):1269-1276.]
[9] 胡振鹏, 葛刚, 刘成林, 等. 鄱阳湖湿地植物生态系统结构及湖水位对其影响研究[J]. 长江流域资源与环境, 2010, 19(6):597-605. [HU Z P, GE G, LIU C L, et al. Structure of Poyang Lake wetland plants ecosystem and influence of lake water level for the structure[J]. Resources and Environment in the Yangtze Basin, 2010, 19(6):597-605.]
[10] 刘旭颖, 关燕宁, 郭杉, 等. 基于时间序列谐波分析的鄱阳湖湿地植被分布与水位变化响应[J]. 湖泊科学, 2016, 28(1):195-206. [LIU X Y, GUAN Y N, GUO S, et al. Response on wetland vegetation distribution to hydrology regularity based on harmonic-time series analysis[J]. Journal of Lake Sciences, 2016, 28(1):195-206.]
[11] 于延胜, 陈兴伟. 基于Mann-Kendall法的径流丰枯变化过程划分[J]. 水资源与水工程学报, 2013, 24(1):60-63. [YU Y S, CHEN X W. Division of variation process of high and low runoff based on Mann-Kendall method[J]. Journal of Water Resources & Water Engineering, 2013, 24(1):60-63.]
[12] 张晓, 李净, 姚晓军, 等. 近45年青海省降水时空变化特征及突变分析[J]. 干旱区资源与环境, 2012, 26(5):6-12. [ZHANG X, LI J, YAO X J, et al. Characteristics of precipitation variation and the abrupt change over Qinghai in recent 45 years[J]. Journal of Arid Land Resources and Environment, 2012, 26(5):6-12.]
[13] 于延胜, 陈兴伟. 基于Mann-Kendall法的水文序列趋势成分比重研究[J]. 自然资源学报, 2011, 26(9):1585-1591. [YU Y S, CHEN X W. Study on the percentage of trend component in a hydrological time series based on Mann-Kendall method[J]. Journal of Natural Resources, 2011, 26(9):1585-1591.]
[14] YUE S, PILON P, CAVADIAS G. Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series[J]. Journal of Hydrology, 2002, 259(1/4):254-271.
[15] HAMED K H. Trend detection in hydrologic data:the Mann-Kendall trend test under the scaling hypothesis[J]. Journal of Hydrology, 2008, 349(3/4):350-363.
[16] 邹春霞, 申向东, 李夏子, 等. 小波分析法在内蒙古寒旱区降水量特征研究中的应用[J]. 干旱区资源与环境, 2012, 26(4):113-116. [ZOU C X, SHEN X D, LI X Z, et al. Application of wavelet method on analysis of precipitation characteristics in dry-cold areas, Inner Mongolia, China[J]. Journal of Arid Land Resources and Environment, 2012, 26(4):113-116.]
[17] 王文圣, 丁晶, 向红莲, 等. 小波分析在水文学中的应用研究及展望[J]. 水科学进展, 2002, 13(4):515-520. [WANG W S, DING J, XIANG H L, et al. Application and prospect of wavelet analysis in hydrology[J]. Advances in Water Science, 2002, 13(4):515-520.]
[18] 桑燕芳, 王中根, 刘昌明. 小波分析方法在水文学研究中的应用现状及展望[J]. 地理科学进展, 2013, 9(9):1413-1422. [SANG Y F, WANG Z G, LIU C M. Applications of wavelet analysis to hydrology:status and prospects[J]. Progress in Geography, 2013, 9(9):1413-1422.]
[19] 王楠, 李栋梁, 张杰. 黄河中上游流域夏季异常降水的变化特征及环流分析[J]. 干旱区地理, 2012, 35(5):754-763. [WANG N, LI D L, ZHANG J. Variations and circulation pattern of drought and flood in summer at middle and upper reaches of Yellow River[J]. Arid Land Geography, 2012, 35(5):754-763.]
[20] 赵军凯. 长江中下游江湖水交换规律研究[D]. 上海:华东师范大学博士学位论文, 2011. [ZHAO J K. Study on the rules of river-lake water exchange in mid-lower reaches of Yangtze River[D]. Shanghai:Doctor Dissertation of East China Normal University, 2011.]
[21] ZHANG Q, YE X C, WERNER A D, et al. An investigation of enhanced recessions in Poyang Lake:comparison of Yangtze river and local catchment impacts[J]. Journal of Hydrology, 2014, 517:425-434.
[22] 中华人民共和国水利部. 中国河流泥沙公报(2003-2014年)[M]. 北京:中国水利水电出版社, 2004-2015. [Ministry of Water Resources of the People's Republic of China. River sediment bulletin of China (2003-2014)[M]. Beijing:China Water Power Press, 2004-2015.]
[23] ZHANG S Y, LIU Y X, YANG Y H, et al. Erosion and deposition within Poyang Lake:evidence from a decade of satellite data[J]. Journal of Great Lakes Research, 2016, 42(2):364-374.
[24] LAI X J, SHANKMAN D, HUBER C, et al. Sand mining and increasing Poyang Lake's discharge ability:a reassessment of causes for lake decline in China[J]. Journal of Hydrology, 2014, 519:1698-1706.
[1] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[2] 郎登潇, 师嘉褀, 郑江坤, 廖峰, 马星, 王文武, 陈怡帆. 近52a西南地区潜在蒸散发时空变化特征[J]. 长江流域资源与环境, 2017, 26(06): 945-954.
[3] 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729.
[4] 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737.
[5] 侯立春, 林振山, 琚胜利, 赖正清, 吴连霞, 张志荣. 环鄱阳湖旅游圈旅游经济联系与区域发展策略[J]. 长江流域资源与环境, 2017, 26(04): 508-518.
[6] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[7] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[8] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[9] 戴雪, 何征, 万荣荣, 杨桂山. 近35 a长江中游大型通江湖泊季节性水情变化规律研究[J]. 长江流域资源与环境, 2017, 26(01): 118-125.
[10] 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16.
[11] 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(Z1): 95-102.
[12] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[13] 彭霞, 郭冰瑶, 魏宁, 佘倩楠, 刘敏, 象伟宁. 近60 a长三角地区极端高温事件变化特征及其对城市化的响应[J]. 长江流域资源与环境, 2016, 25(12): 1917-1926.
[14] 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758.
[15] 戴雪, 杨桂山, 万荣荣, 李冰, 王晓龙. 鄱阳湖洲滩植被健康状态评价及其典型不健康年水文条件分析[J]. 长江流域资源与环境, 2016, 25(09): 1395-1402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈亚华,黄少华,刘胜环,王桂萍,丁 锋,邵志成,沈振国. 南京地区农田土壤和蔬菜重金属污染状况研究[J]. 长江流域资源与环境, 2006, 15(3): 356 -360 .
[2] 王 初, 陈振楼, 王 京, 周乃晟, 许世远. 上海市崇明岛公路两侧土壤重金属污染研究[J]. 长江流域资源与环境, 2008, 17(1): 105 .
[3] 班军梅,缪启龙,李 雄. 西南地区近50年来气温变化特征研究[J]. 长江流域资源与环境, 2006, 15(3): 346 -351 .
[4] 马鹏红,黄贤金,于术桐,邬 震. 江西省上饶县农户水土保持投资行为机理与实证模型[J]. 长江流域资源与环境, 2004, 13(6): 568 -572 .
[5] 姚海林,杨 洋, 谷志孟. 垃圾块体填埋法及其应用前景[J]. 长江流域资源与环境, 2005, 14(1): 123 -126 .
[6] 雷广海|刘友兆,陆效平. 江苏省13城市土地利用集约度时空变异及驱动因素[J]. 长江流域资源与环境, 2009, 18(1): 7 .
[7] 娄保锋,陈永柏,翁立达, 臧小平,束金祥,宋江英,刘 成. 水样不同处理方式对高锰酸盐指数测定值的影响[J]. 长江流域资源与环境, 2008, 17(1): 143 .
[8] 李成芳, 曹凑贵, 汪金平, 展茗, 蔡明历. 稻鸭、稻鱼共作对稻田P素动态变化的影响[J]. 长江流域资源与环境, 2009, 18(2): 126 .
[9] 戴天晟 孙绍荣 赵文会 顾宝炎. 区域水资源可持续利用评价的FAHP-PP模型[J]. 长江流域资源与环境, 2009, 18(5): 421 .
[10] 周旭, 张斌, 刘刚才. 元谋干热河谷近30年植被变化遥感监测[J]. 长江流域资源与环境, 2010, 19(11): 1309 .