长江流域资源与环境 >> 2015, Vol. 24 >> Issue (05): 832-838.doi: 10.11870/cjlyzyyhj201505016

• 生态环境 • 上一篇    下一篇

1956~2011年鄱阳湖水沙特征及其变化规律分析

李微1, 李昌彦2, 吴敦银1,3, 陈多多1   

  1. 1. 江西师范大学地理与环境学院, 江西 南昌 330022;
    2. 南昌工程学院工商管理学院, 江西 南昌 330099;
    3. 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室, 江西 南昌 330022
  • 收稿日期:2014-04-01 修回日期:2014-05-05 出版日期:2015-05-20
  • 作者简介:李微(1986~),女,硕士研究生,主要从事水文水资源研究.E-mail463886998@qq.com
  • 基金资助:
    江西省科技支撑课题(2009BSA13800);江西省水利厅科技项目(200805)

CHARACTERISTICS OF RUNOFF-SEDIMENT INTO AND OUT OF THE POYANG LAKE FROM 1956 TO 2011

LI Wei1, LI Chang-yan2, WU Dun-yin1,3, CHEN Duo-duo1   

  1. 1. School of Geography and Environment, Jiang xi Normal University, Nanchang 330022, China;
    2. Business Administration College, Nanchang Institute of Technology, Nanchang 330099, China;
    3. Key Laboratory of Lake Poyang Ecological Environment and Resource Research of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
  • Received:2014-04-01 Revised:2014-05-05 Online:2015-05-20
  • Contact: 吴敦银

摘要: 近年来, 鄱阳湖水沙研究集中在鄱阳湖"五河"各水文站的单站分析上, 且水沙数据采用大多仅至21世纪初期, 对缺测资料未进行有效插补。将鄱阳湖作为一个研究整体, 分析了鄱阳湖水沙特征及其变化规律, 以便为鄱阳湖泊形态变化研究以及水、沙资源的合理开发利用提供有利的参考依据。运用水沙相关、上下游泥沙相关法对部分缺测泥沙进行插补, 获得1956~2011年的鄱阳湖入、出湖水沙系列数据。利用数理统计法、水沙双累积曲线法、Mann-Kendall法分析鄱阳湖入、出湖径流量与输沙量变化特征, 并且探讨了水沙变化的原因。结果表明:(1)入湖径流量和输沙量的年内分配相一致, 而长江水沙的倒灌影响了出湖径流量和输沙量的年内分配;(2)鄱阳湖入湖悬移质泥沙从90年代开始下降趋势加剧, 而出湖悬移质泥沙1956~2000年整体呈下降趋势, 2001~2011年呈现上升趋势;(3)鄱阳湖入、出湖年输沙量出现明显的突变点分别在1998年左右、2003年左右;(4)径流量总体处于相对稳定状态, 但近10 a来径流量略下降, 主要受到降水量变少的影响, 入湖输沙量变化受"五河"流域的水库蓄水拦沙、流域水土保持工作加强、人类河床采砂等因素影响;而出湖河段河床深度下切、江湖水面比降加大、人类在鄱阳湖采砂扰动河(湖)床均加大了近10 a来出湖悬移质泥沙的输出。

关键词: 鄱阳湖, 水沙特征, 演变趋势, 突变分析

Abstract: In recent years, there are more and more researchers who conducted studies on the Poyang Lake about the water and sediment transport. However, they mainly focused on statistical analysis of water and sediment data at five hydrologic stations on the Ganjiang River, Fuhe River, Xinjiang River, Raohe River, Xiushui River. The data were obtained from 1956 to 2005 and the missing data were not interpolated in those researches.In this study we took the variation characteristics of runoff and sediment transport of the Poyang Lake as a whole. Studies of water and sediment transport characteristics provide evidence for researching the change in the morphology, and could give reasonable guidance in exploitation and utilization of soil and water resources in the Poyang Lake. Firstly, we used two methods to interpolate the lack of measurement data in the Poyang Lake from 1956 to 2011. Secondly, the variation characteristics of runoff and sediment transport at important hydrometric stations of the Poyang Lake were analyzed by using mathematical statistics, the double accumulative curve of annual runoff and sediment and the Mann-Kendall method, based on the data from 1956 to 2011. Then we studied the causes of the variation characteristics of runoff and sediment transport in recent decades. The results showed that: 1) The annual distribution of runoff into the lake was consistent with sediment load, however, the phenomenon of the Yangtze River water and sediment flow backward influenced the annual distribution of runoff and sediment transport out of the lake; 2) The trend of the annual variation of the suspension sediment load into the Poyang lake began to intensively decline from the 1990s, but the suspension sediment load out of the Poyang lake presented a whole descending trend from 1956 to 2000, the data also demonstrated that the suspension sediment load out the Poyang lake is on the increase from 2001 to 2011; 3) Sediment load into the Poyang lake appeared to be a mutation point around 1998, sediment load out of the Poyang lake occurred around 2003. 4) Change of runoff transport tended to be a relatively stable state in the 56 years, but in recent decades, it has close relationship with the influence of the precipitation in the Poyang Lake basin. Then change of sediment transport of Poyang Lake is relatively complicated. Sediment load into the lake was significantly reduced, but sediment load out of the lake increased obviously. The reasons caused reduced sediment load into the lake include: ① There were many reservoirs in five rivers of Poyang Lake, which had function of water storage and sediment retaining, such as Wanan reservoir. ② The government strengthened soil and water conservation in the Poyang lake basin so that this measure can obviously decrease sediment load. ③ The downstream of the five rivers were infected by the sand-excavation on the river channel, which led to reduced sediment load into the lake. However, there were many reasons which induced increasing sediment load out of the lake: ① The depth of river bed was decreased in Hukou. ② Influenced by the Three-Gorges Project, gradient ration about the Poyang Lake and Yangtze River was increased. ③ Sand mining could cause the disturbance of the river bed so that the river flowing velocity became faster.

Key words: Poyang Lake, runoff and sediment characteristics, the evolution tendency, mutation analysis

中图分类号: 

  • TV142
[1] 朱宏富, 金锋, 李荣昉.鄱阳湖调蓄功能与防灾综合治理研究[M].北京:气象出版社, 2002.
[2] 张本, 陆中光, 朱宏富.鄱阳湖研究[M].上海:上海科学技术出版社, 1988.
[3] 郭鹏, 陈晓玲, 刘影, 等.鄱阳湖湖口、外洲、梅港三站水沙变化及趋势分析(1955-2001年)[J].湖泊科学, 2006, 18(5):458-463.
[4] 张荣峰.鄱阳湖水系泥沙特性及对环境的影响[J].江西水利科技, 1991(9):237-241.
[5] 孙鹏, 张强, 陈晓宏, 等.鄱阳湖流域水沙时空演变特征及其机理[J].地理学报, 2010, 65(7):828-840.
[6] 孙鹏, 张强, 陈晓宏, 等.鄱阳湖流域水沙周期特征及其影响因素[J].武汉大学学报(理学版), 2011, 57(4):298-304.
[7] 罗小平, 郑林, 齐述华, 等.鄱阳湖与长江水沙通量变化特征分析[J].人民长江, 2008, 39(6):12-14.
[8] 胡久伟, 吴敦银, 李荣昉, 等.鄱阳湖湖口河段近期演变规律及趋势分析[J].水文, 2011, 32(2):46-49.
[9] 闵骞, 时建国, 闵聃, 等.1956~2005年鄱阳湖入出湖悬移质泥沙特征及其变化初析[J].水文, 2011, 31(1):54-58.
[10] 李景保, 王克林, 秦建新, 等.洞庭湖年径流泥沙的演变特征及其动因[J].地理学报, 2005, 60(3):503-510.
[11] 刘元波, 张奇, 刘健, 等.鄱阳湖流域气候水文过程及水环境效应[M].北京:科学出版社, 2012.
[12] 饶胜, 方精云, 崔海亭, 等.最近10年鄱阳湖区土地利用格局的时空变化[J].长江流域资源与环境, 2002, 11(5):421-426.
[13] 方春明, 曹文洪, 毛继新, 等.鄱阳湖与长江关系及三峡蓄水的影响[J].水利学报, 2012, 43(2):174-181.
[14] 刘健, 张奇, 许崇育, 等, 近50年鄱阳湖流域径流变化特征研究[J].热带地理, 2009, 29(3):213-218.
[1] 李云良, 姚静, 张小琳, 张奇. 鄱阳湖水体垂向分层状况调查研究[J]. 长江流域资源与环境, 2017, 26(06): 915-924.
[2] 张小琳, 张奇, 王晓龙. 洪泛湖泊水位-流量关系的非线性特征分析[J]. 长江流域资源与环境, 2017, 26(05): 723-729.
[3] 李金前, 王吉, 刘亚军, 邹锋, 马燕天, 吴兰. 水位高程变化对湿地土壤微生物代谢功能的影响研究——以蚌湖为例[J]. 长江流域资源与环境, 2017, 26(05): 730-737.
[4] 侯立春, 林振山, 琚胜利, 赖正清, 吴连霞, 张志荣. 环鄱阳湖旅游圈旅游经济联系与区域发展策略[J]. 长江流域资源与环境, 2017, 26(04): 508-518.
[5] 齐凌艳, 黄佳聪, 高俊峰, 郭玉银. 鄱阳湖枯水水位及流速时空分布模拟[J]. 长江流域资源与环境, 2017, 26(04): 572-584.
[6] 赵志刚, 余德, 韩成云, 王凯荣. 2008~2016年鄱阳湖生态经济区生态系统服务价值的时空变化研究[J]. 长江流域资源与环境, 2017, 26(02): 198-208.
[7] 李冰, 杨桂山, 万荣荣, 刘宝贵, 戴雪, 许晨. 鄱阳湖出流水质2004~2014年变化及其对水位变化的响应:对水质监测频率的启示[J]. 长江流域资源与环境, 2017, 26(02): 289-296.
[8] 戴雪, 何征, 万荣荣, 杨桂山. 近35 a长江中游大型通江湖泊季节性水情变化规律研究[J]. 长江流域资源与环境, 2017, 26(01): 118-125.
[9] 张范平, 方少文, 周祖昊, 温天福, 张梅红. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境, 2017, 26(01): 126-133.
[10] 朱婧瑄, 齐述华, 刘贵花, 王点, 熊梦雅. 2000~2013年鄱阳湖流域蒸散量时空变化[J]. 长江流域资源与环境, 2016, 25(Z1): 9-16.
[11] 汪丹, 王点, 齐述华. 鄱阳湖水位-淹水面积关系不确定性的分析[J]. 长江流域资源与环境, 2016, 25(Z1): 95-102.
[12] 李云良, 张小琳, 赵贵章, 姚静, 张奇. 鄱阳湖区地下水位动态及其与湖水侧向水力联系分析[J]. 长江流域资源与环境, 2016, 25(12): 1894-1902.
[13] 李云良, 姚静, 李梦凡, 张奇. 鄱阳湖水流运动与污染物迁移路径的粒子示踪研究[J]. 长江流域资源与环境, 2016, 25(11): 1748-1758.
[14] 戴雪, 杨桂山, 万荣荣, 李冰, 王晓龙. 鄱阳湖洲滩植被健康状态评价及其典型不健康年水文条件分析[J]. 长江流域资源与环境, 2016, 25(09): 1395-1402.
[15] 李云良, 许秀丽, 赵贵章, 姚静, 张奇. 鄱阳湖典型洲滩湿地土壤质地与水分特征参数研究[J]. 长江流域资源与环境, 2016, 25(08): 1200-1208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李燕玲, 刘爱民. 长江流域冬季农业主要作物的耕地竞争机制及案例研究[J]. 长江流域资源与环境, 2009, 18(2): 146 .
[2] 解晓南,许朋柱,秦伯强. 太湖流域苏锡常地区地面沉降若干问题探析[J]. 长江流域资源与环境, 2005, 14(1): 125 -131 .
[3] 简敏菲,弓晓峰,游 海,黄志中,朱 捷. 鄱阳湖水土环境及其水生维管束植物重金属污染[J]. 长江流域资源与环境, 2004, 13(6): 589 -593 .
[4] 王海英,宫渊波,陈林武. 不同植被恢复模式下土壤微生物及酶活性的比较——以嘉陵江上游地区为例[J]. 长江流域资源与环境, 2006, 15(2): 201 -206 .
[5] 李 娜,许有鹏, 陈 爽. 苏州城市化进程对降雨特征影响分析[J]. 长江流域资源与环境, 2006, 15(3): 335 -339 .
[6] 向云波,徐长乐,彭秀芬. 长江三角洲城市群循环经济发展水平的空间格局分析[J]. 长江流域资源与环境, 2008, 17(5): 661 .
[7] 孙维侠, 赵永存, 黄 标, 廖菁菁, 王志刚, 王洪杰. 长三角典型地区土壤环境中Se的空间变异特征及其与人类健康的关系[J]. 长江流域资源与环境, 2008, 17(1): 113 .
[8] 丰志勇,曾 刚. 上海市工业园区投资环境评价研究[J]. 长江流域资源与环境, 2006, 15(3): 274 -280 .
[9] 宋新山, 汪永辉, 秦 艳, 刘振鸿, 吴应玲. 上海新城区构建湿地处理污水的经济技术分析[J]. 长江流域资源与环境, 2006, 15(Sup1): 88 -91 .
[10] 时连强,李九发,应 铭,左书华,徐海根. 长江口没冒沙演变过程及其对水库工程的响应[J]. 长江流域资源与环境, 2006, 15(4): 458 -464 .